These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 18318685)
1. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris. Pellny TK; Van Aken O; Dutilleul C; Wolff T; Groten K; Bor M; De Paepe R; Reyss A; Van Breusegem F; Noctor G; Foyer CH Plant J; 2008 Jun; 54(6):976-92. PubMed ID: 18318685 [TBL] [Abstract][Full Text] [Related]
2. Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply. Hager J; Pellny TK; Mauve C; Lelarge-Trouverie C; De Paepe R; Foyer CH; Noctor G Planta; 2010 Apr; 231(5):1145-57. PubMed ID: 20182741 [TBL] [Abstract][Full Text] [Related]
3. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Dutilleul C; Lelarge C; Prioul JL; De Paepe R; Foyer CH; Noctor G Plant Physiol; 2005 Sep; 139(1):64-78. PubMed ID: 16126851 [TBL] [Abstract][Full Text] [Related]
4. Proteomic Profiling for Metabolic Pathways Involved in Interactive Effects of Elevated Carbon Dioxide and Nitrogen on Leaf Growth in a Perennial Grass Species. Yu J; Fan N; Li R; Zhuang L; Xu Q; Huang B J Proteome Res; 2019 Jun; 18(6):2446-2457. PubMed ID: 31081640 [TBL] [Abstract][Full Text] [Related]
5. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. Priault P; Tcherkez G; Cornic G; De Paepe R; Naik R; Ghashghaie J; Streb P J Exp Bot; 2006; 57(12):3195-207. PubMed ID: 16945981 [TBL] [Abstract][Full Text] [Related]
6. A role for shoot protein in shoot-root dry matter allocation in higher plants. Andrews M; Raven JA; Lea PJ; Sprent JI Ann Bot; 2006 Jan; 97(1):3-10. PubMed ID: 16299006 [TBL] [Abstract][Full Text] [Related]
7. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. Priault P; Fresneau C; Noctor G; De Paepe R; Cornic G; Streb P J Exp Bot; 2006; 57(9):2075-85. PubMed ID: 16714313 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays. Roycewicz P; Malamy JE Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1595):1489-500. PubMed ID: 22527391 [TBL] [Abstract][Full Text] [Related]
9. Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Takatani N; Ito T; Kiba T; Mori M; Miyamoto T; Maeda S; Omata T Plant Cell Physiol; 2014 Feb; 55(2):281-92. PubMed ID: 24319077 [TBL] [Abstract][Full Text] [Related]
10. Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism. Faure JD; Jullien M; Caboche M Plant J; 1994 Apr; 5(4):481-91. PubMed ID: 8012402 [TBL] [Abstract][Full Text] [Related]
11. Elevated pCO(2 )favours nitrate reduction in the roots of wild-type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-metabolism in transformants lacking functional nitrate reductase in the roots. Kruse J; Hetzger I; Hänsch R; Mendel RR; Walch-Liu P; Engels C; Rennenberg H J Exp Bot; 2002 Dec; 53(379):2351-67. PubMed ID: 12432028 [TBL] [Abstract][Full Text] [Related]
12. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply. Gruffman L; Palmroth S; Näsholm T Tree Physiol; 2013 Jun; 33(6):590-600. PubMed ID: 23824240 [TBL] [Abstract][Full Text] [Related]
14. Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants. Henry LT; Raper CD J Plant Nutr; 1989; 12(7):811-26. PubMed ID: 11537085 [TBL] [Abstract][Full Text] [Related]
15. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Liu KH; Niu Y; Konishi M; Wu Y; Du H; Sun Chung H; Li L; Boudsocq M; McCormack M; Maekawa S; Ishida T; Zhang C; Shokat K; Yanagisawa S; Sheen J Nature; 2017 May; 545(7654):311-316. PubMed ID: 28489820 [TBL] [Abstract][Full Text] [Related]
16. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Tanimoto E Ann Bot; 2012 Jul; 110(2):373-81. PubMed ID: 22437663 [TBL] [Abstract][Full Text] [Related]
17. Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. Akçay N; Bor M; Karabudak T; Ozdemir F; Türkan I J Plant Physiol; 2012 Mar; 169(5):452-8. PubMed ID: 22189426 [TBL] [Abstract][Full Text] [Related]
18. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation. Hänsch R; Fessel DG; Witt C; Hesberg C; Hoffmann G; Walch-Liu P; Engels C; Kruse J; Rennenberg H; Kaiser WM; Mendel RR J Exp Bot; 2001 Jun; 52(359):1251-8. PubMed ID: 11432943 [TBL] [Abstract][Full Text] [Related]
19. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. Yu P; Li X; Yuan L; Li C Physiol Plant; 2014 Jan; 150(1):133-44. PubMed ID: 23724916 [TBL] [Abstract][Full Text] [Related]
20. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Mantelin S; Desbrosses G; Larcher M; Tranbarger TJ; Cleyet-Marel JC; Touraine B Planta; 2006 Feb; 223(3):591-603. PubMed ID: 16160849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]