These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18320005)

  • 1. Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy.
    Winnewisser C; Lewen F; Weinzierl J; Helm H
    Appl Opt; 1999 Jun; 38(18):3961-7. PubMed ID: 18320005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct fabrication of terahertz optical devices on low-absorption polymer substrates.
    Ma Y; Khalid A; Drysdale TD; Cumming DR
    Opt Lett; 2009 May; 34(10):1555-7. PubMed ID: 19448819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz bandpass filters using double-stacked metamaterial layers.
    Zhu Y; Vegesna S; Kuryatkov V; Holtz M; Saed M; Bernussi AA
    Opt Lett; 2012 Feb; 37(3):296-8. PubMed ID: 22297331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant metal-mesh bandpass filters for the far infrared.
    Porterfield DW; Hesler JL; Densing R; Mueller ER; Crowe TW; Weikle Ii RM
    Appl Opt; 1994 Sep; 33(25):6046-52. PubMed ID: 20936018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freestanding narrowband terahertz filters based on aluminum foil.
    Shi L; Chi T; Su R; Zang S; Yao S; Fan K; Tu X; Zhang C; Wu J; Jin B; Chen J; Wu P
    Opt Express; 2023 May; 31(11):17547-17556. PubMed ID: 37381485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures.
    Lan F; Yang Z; Qi L; Gao X; Shi Z
    Opt Lett; 2014 Apr; 39(7):1709-12. PubMed ID: 24686585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining.
    Lin Y; Yao H; Ju X; Chen Y; Zhong S; Wang X
    Opt Express; 2017 Oct; 25(21):25125-25134. PubMed ID: 29041184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective terahertz bandpass filters based on trapped mode excitation.
    Paul O; Beigang R; Rahm M
    Opt Express; 2009 Oct; 17(21):18590-5. PubMed ID: 20372589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable dual-band terahertz metamaterial bandpass filters.
    Zhu Y; Vegesna S; Zhao Y; Kuryatkov V; Holtz M; Fan Z; Saed M; Bernussi AA
    Opt Lett; 2013 Jul; 38(14):2382-4. PubMed ID: 23939055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.
    Khodaee M; Banakermani M; Baghban H
    Appl Opt; 2015 Oct; 54(29):8617-24. PubMed ID: 26479795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Far infrared bandpass filters and measurements on a reciprocal grid.
    Ressler GM; Möller KD
    Appl Opt; 1967 May; 6(5):893-6. PubMed ID: 20057871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-infrared bandpass filters from cross-shaped grids.
    Tomaselli VP; Edewaard DC; Gillan P; Möller KD
    Appl Opt; 1981 Apr; 20(8):1361-6. PubMed ID: 20309314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz polarization-maintaining subwavelength filters.
    Li H; Atakaramians S; Yuan J; Xiao H; Wang W; Li Y; Wu B; Han Z
    Opt Express; 2018 Oct; 26(20):25617-25629. PubMed ID: 30469661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single nanowire photoconductive terahertz detectors.
    Peng K; Parkinson P; Fu L; Gao Q; Jiang N; Guo YN; Wang F; Joyce HJ; Boland JL; Tan HH; Jagadish C; Johnston MB
    Nano Lett; 2015 Jan; 15(1):206-10. PubMed ID: 25490548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zeptojoule detection of terahertz pulses by parametric frequency upconversion.
    Jubgang Fandio DJ; Vishnuradhan A; Yalavarthi EK; Cui W; Couture N; Gamouras A; Ménard JM
    Opt Lett; 2024 Mar; 49(6):1556-1559. PubMed ID: 38489449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Frequency correction in terahertz absorption spectroscopy].
    Wu B; Shi XS; Sun Q; Deng YQ; Wang HF; Chen KF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2343-7. PubMed ID: 24369628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-actuated thermally tunable on-chip terahertz filters based on a whispering gallery mode resonator.
    Wang Z; Dong G; Yuan S; Chen L; Wu X; Zhang X
    Opt Lett; 2019 Oct; 44(19):4670-4673. PubMed ID: 31568413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guided mode resonance flat-top bandpass filter for terahertz telecom applications.
    Ferraro A; Tanga AA; Zografopoulos DC; Messina GC; Ortolani M; Beccherelli R
    Opt Lett; 2019 Sep; 44(17):4239-4242. PubMed ID: 31465371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation.
    Ibrahim A; Férachou D; Sharma G; Singh K; Kirouac-Turmel M; Ozaki T
    Sci Rep; 2016 Mar; 6():23107. PubMed ID: 26976363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proof of concept for continuously-tunable terahertz bandpass filter based on a gradient metal-hole array.
    Gavdush AA; Chernomyrdin NV; Lavrukhin DV; Cao Y; Komandin GA; Spektor IE; Perov AN; Dolganova IN; Katyba GM; Kurlov VN; Ponomarev DS; Skorobogatiy M; Reshetov IV; Zaytsev KI
    Opt Express; 2020 Aug; 28(18):26228-26238. PubMed ID: 32906899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.