BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18320186)

  • 1. Plant/microbe cooperation for electricity generation in a rice paddy field.
    Kaku N; Yonezawa N; Kodama Y; Watanabe K
    Appl Microbiol Biotechnol; 2008 May; 79(1):43-9. PubMed ID: 18320186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.
    Kouzuma A; Kaku N; Watanabe K
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9521-6. PubMed ID: 25394406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting electric output from rice-paddy microbial fuel cells.
    Takanezawa K; Nishio K; Kato S; Hashimoto K; Watanabe K
    Biosci Biotechnol Biochem; 2010; 74(6):1271-3. PubMed ID: 20530890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of long-term organic and conventional fertilization on bacterial communities involved in bioelectricity production from paddy field-microbial fuel cells.
    Kamaraj Y; Punamalai G; Kandasamy S; Kasinathan K
    Arch Microbiol; 2020 Oct; 202(8):2279-2289. PubMed ID: 32535790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.
    Kouzuma A; Kasai T; Nakagawa G; Yamamuro A; Abe T; Watanabe K
    PLoS One; 2013; 8(11):e77443. PubMed ID: 24223712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells.
    Ki D; Park J; Lee J; Yoo K
    Water Sci Technol; 2008; 58(11):2195-201. PubMed ID: 19092196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes.
    Aelterman P; Versichele M; Marzorati M; Boon N; Verstraete W
    Bioresour Technol; 2008 Dec; 99(18):8895-902. PubMed ID: 18524577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia.
    Sudirjo E; de Jager P; Buisman CJN; Strik DPBTB
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31731543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell.
    Shimoyama T; Komukai S; Yamazawa A; Ueno Y; Logan BE; Watanabe K
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):325-30. PubMed ID: 18581110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere.
    Chen Z; Huang YC; Liang JH; Zhao F; Zhu YG
    Bioresour Technol; 2012 Mar; 108():55-9. PubMed ID: 22265978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct generation of electricity from sludges and other liquid wastes.
    Dentel SK; Strogen B; Chiu P
    Water Sci Technol; 2004; 50(9):161-8. PubMed ID: 15581008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice roots select for type I methanotrophs in rice field soil.
    Wu L; Ma K; Lu Y
    Syst Appl Microbiol; 2009 Sep; 32(6):421-8. PubMed ID: 19481894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities.
    Wu WX; Liu W; Lu HH; Chen YX; Medha D; Janice T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):93-102. PubMed ID: 19049503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms.
    Zang GL; Sheng GP; Tong ZH; Liu XW; Teng SX; Li WW; Yu HQ
    Environ Sci Technol; 2010 Apr; 44(7):2715-20. PubMed ID: 20225844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity generation in a microbial fuel cell with a microbially catalyzed cathode.
    Zhang JN; Zhao QL; Aelterman P; You SJ; Jiang JQ
    Biotechnol Lett; 2008 Oct; 30(10):1771-6. PubMed ID: 18563585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition.
    Scheid D; Stubner S; Conrad R
    FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell.
    Rosenbaum M; Schröder U; Scholz F
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):753-6. PubMed ID: 15696280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell.
    Arends JB; Speeckaert J; Blondeel E; De Vrieze J; Boeckx P; Verstraete W; Rabaey K; Boon N
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3205-17. PubMed ID: 24201892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying plant-microbe interactions using stable isotope technologies.
    Prosser JI; Rangel-Castro JI; Killham K
    Curr Opin Biotechnol; 2006 Feb; 17(1):98-102. PubMed ID: 16413769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.