BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18320568)

  • 1. A PCR-based strategy to generate yeast strains expressing endogenous levels of amino-terminal epitope-tagged proteins.
    Booher KR; Kaiser P
    Biotechnol J; 2008 Apr; 3(4):524-9. PubMed ID: 18320568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast.
    Tamm T
    Yeast; 2009 Jan; 26(1):55-66. PubMed ID: 19180640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae.
    Sung MK; Ha CW; Huh WK
    Yeast; 2008 Apr; 25(4):301-11. PubMed ID: 18350525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae.
    Gauss R; Trautwein M; Sommer T; Spang A
    Yeast; 2005 Jan; 22(1):1-12. PubMed ID: 15565729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes.
    Janke C; Magiera MM; Rathfelder N; Taxis C; Reber S; Maekawa H; Moreno-Borchart A; Doenges G; Schwob E; Schiebel E; Knop M
    Yeast; 2004 Aug; 21(11):947-62. PubMed ID: 15334558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-ICE plasmids for generating N-terminal 3 × FLAG tagged genes that allow inducible, constitutive or endogenous expression in Saccharomyces cerevisiae.
    Zhang Y; Serratore ND; Briggs SD
    Yeast; 2017 May; 34(5):223-235. PubMed ID: 27943405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HB tag modules for PCR-based gene tagging and tandem affinity purification in Saccharomyces cerevisiae.
    Tagwerker C; Zhang H; Wang X; Larsen LS; Lathrop RH; Hatfield GW; Auer B; Huang L; Kaiser P
    Yeast; 2006 Jun; 23(8):623-32. PubMed ID: 16823883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the repertoire of plasmids for PCR-mediated epitope tagging in yeast.
    Moqtaderi Z; Struhl K
    Yeast; 2008 Apr; 25(4):287-92. PubMed ID: 18338317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A set of epitope-tagging integration vectors for functional analysis in Saccharomyces cerevisiae.
    Sung H; Chul Han K; Chul Kim J; Wan Oh K; Su Yoo H; Tae Hong J; Bok Chung Y; Lee CK; Lee KS; Song S
    FEMS Yeast Res; 2005 Jul; 5(10):943-50. PubMed ID: 15996627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae.
    Schneider BL; Seufert W; Steiner B; Yang QH; Futcher AB
    Yeast; 1995 Oct; 11(13):1265-74. PubMed ID: 8553697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipurpose vectors designed for the fast generation of N- or C-terminal epitope-tagged proteins.
    Cullin C; Minvielle-Sebastia L
    Yeast; 1994 Jan; 10(1):105-12. PubMed ID: 7515538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vector for double epitope tagging with a recyclable marker.
    Germino M; Sohail H; Germino E; Germino J
    Yeast; 2006 Jul; 23(10):763-9. PubMed ID: 16862609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New constructs and strategies for efficient PCR-based gene manipulations in yeast.
    Puig O; Rutz B; Luukkonen BG; Kandels-Lewis S; Bragado-Nilsson E; Séraphin B
    Yeast; 1998 Sep; 14(12):1139-46. PubMed ID: 9778799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae.
    Funakoshi M; Hochstrasser M
    Yeast; 2009 Mar; 26(3):185-92. PubMed ID: 19243080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gene truncation strategy generating N- and C-terminal deletion variants of proteins for functional studies: mapping of the Sec1p binding domain in yeast Mso1p by a Mu in vitro transposition-based approach.
    Poussu E; Jäntti J; Savilahti H
    Nucleic Acids Res; 2005 Jul; 33(12):e104. PubMed ID: 16006618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach to investigating protein/protein interactions and their functions by TAP-tagged yeast strains and its application to examine yeast transcription machinery.
    Jung J; Ahn YJ; Kang LW
    J Microbiol Biotechnol; 2008 Apr; 18(4):631-8. PubMed ID: 18467854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of an N-terminal epitope tag significantly increases the activity of plant fatty acid desaturases expressed in yeast cells.
    O'Quin JB; Mullen RT; Dyer JM
    Appl Microbiol Biotechnol; 2009 May; 83(1):117-25. PubMed ID: 19137289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New pFA-cassettes for PCR-based gene manipulation in Candida albicans.
    Schaub Y; Dünkler A; Walther A; Wendland J
    J Basic Microbiol; 2006; 46(5):416-29. PubMed ID: 17009297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A vector system for genomic FLAG epitope-tagging in Schizosaccharomyces pombe.
    Noguchi C; Garabedian MV; Malik M; Noguchi E
    Biotechnol J; 2008 Oct; 3(9-10):1280-5. PubMed ID: 18729046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive promoter modules for PCR-based gene modification in Saccharomyces cerevisiae.
    DeMarini DJ; Carlin EM; Livi GP
    Yeast; 2001 Jun; 18(8):723-8. PubMed ID: 11378899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.