These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 18321052)
1. Activity of alpha-amylase inhibitors from Phaseolus coccineus on digestive alpha-amylases of the coffee berry borer. Valencia-Jiménez A; Arboleda Valencia JW; Grossi-De-Sá MF J Agric Food Chem; 2008 Apr; 56(7):2315-20. PubMed ID: 18321052 [TBL] [Abstract][Full Text] [Related]
2. An alpha-amylase inhibitor gene from Phaseolus coccineus encodes a protein with potential for control of coffee berry borer (Hypothenemus hampei). de Azevedo Pereira R; Nogueira Batista JA; da Silva MC; Brilhante de Oliveira Neto O; Zangrando Figueira EL; Valencia Jiménez A; Grossi-de-Sa MF Phytochemistry; 2006 Sep; 67(18):2009-16. PubMed ID: 16901522 [TBL] [Abstract][Full Text] [Related]
3. Effect of a Bowman-Birk proteinase inhibitor from Phaseolus coccineus on Hypothenemus hampei gut proteinases in vitro. de Azevedo Pereira R; Valencia-Jiménez A; Magalhães CP; Prates MV; Melo JA; de Lima LM; de Sales MP; Tempel Nakasu EY; da Silva MC; Grossi-de-Sá MF J Agric Food Chem; 2007 Dec; 55(26):10714-9. PubMed ID: 18020416 [TBL] [Abstract][Full Text] [Related]
4. Alpha-amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Valencia A; Bustillo AE; Ossa GE; Chrispeels MJ Insect Biochem Mol Biol; 2000 Mar; 30(3):207-13. PubMed ID: 10732988 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory specificity and insecticidal selectivity of alpha-amylase inhibitor from Phaseolus vulgaris. Kluh I; Horn M; Hýblová J; Hubert J; Dolecková-Maresová L; Voburka Z; Kudlíková I; Kocourek F; Mares M Phytochemistry; 2005 Jan; 66(1):31-9. PubMed ID: 15649508 [TBL] [Abstract][Full Text] [Related]
7. A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor. Nahoum V; Farisei F; Le-Berre-Anton V; Egloff MP; Rougé P; Poerio E; Payan F Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):360-2. PubMed ID: 10089450 [TBL] [Abstract][Full Text] [Related]
8. Digestive alpha-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors. Valencia-Jiménez A; Arboleda JW; López Avila A; Grossi-de-Sá MF Bull Entomol Res; 2008 Dec; 98(6):575-9. PubMed ID: 18590601 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and characterization of an α-amylase cDNA highly expressed in major feeding stages of the coffee berry borer, Hypothenemus hampei. Bezerra CA; Macedo LL; Amorim TM; Santos VO; Fragoso RR; Lucena WA; Meneguim AM; Valencia-Jimenez A; Engler G; Silva MC; Albuquerque EV; Grossi-de-Sa MF Gene; 2014 Dec; 553(1):7-16. PubMed ID: 25264343 [TBL] [Abstract][Full Text] [Related]
10. Caffeine and resistance of coffee to the berry borer Hypothenemus hampei (Coleoptera: Scolytidae). Guerreiro Filho O; Mazzafera P J Agric Food Chem; 2003 Nov; 51(24):6987-91. PubMed ID: 14611159 [TBL] [Abstract][Full Text] [Related]
11. Protective mechanism of the Mexican bean weevil against high levels of alpha-amylase inhibitor in the common bean. Ishimoto M; Chrispeels MJ Plant Physiol; 1996 Jun; 111(2):393-401. PubMed ID: 8787024 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characterization of the alpha-amylase inhibitor in mungbeans and its application in inhibiting the growth of Callosobruchus maculatus. Wisessing A; Engkagul A; Wongpiyasatid A; Choowongkomon K J Agric Food Chem; 2010 Feb; 58(4):2131-7. PubMed ID: 20099823 [TBL] [Abstract][Full Text] [Related]
14. Determination of alpha-amylase inhibitor activity of phaseolamin from kidney bean (Phaseolus vulgaris) in dietary supplements by HPAEC-PAD. Mosca M; Boniglia C; Carratù B; Giammarioli S; Nera V; Sanzini E Anal Chim Acta; 2008 Jun; 617(1-2):192-5. PubMed ID: 18486657 [TBL] [Abstract][Full Text] [Related]
15. Comparison of alpha-amylase activity in larval stages of flour beetles, Tribolium confusum (Coleoptera: Tenebionidae). Bandani AR; Balvasi A Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):537-41. PubMed ID: 17385521 [TBL] [Abstract][Full Text] [Related]
16. Host-mediated induction of alpha-amylases by larvae of the Mexican bean weevil Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae) is irreversible and observed from the initiation of the feeding period. Bifano TD; Samuels RI; Alexandre D; Silva CP Arch Insect Biochem Physiol; 2010 Aug; 74(4):247-60. PubMed ID: 20645418 [TBL] [Abstract][Full Text] [Related]
17. Characterization of two Acanthoscelides obtectus alpha-amylases and their inactivation by wheat inhibitors. Franco OL; Melo FR; Mendes PA; Paes NS; Yokoyama M; Coutinho MV; Bloch C; Grossi-de-Sá MF J Agric Food Chem; 2005 Mar; 53(5):1585-90. PubMed ID: 15740044 [TBL] [Abstract][Full Text] [Related]
18. An inhibitor from Lupinus bogotensis seeds effective against aspartic proteases from Hypothenemus hampei. Molina D; Zamora H; Blanco-Labra A Phytochemistry; 2010 Jun; 71(8-9):923-9. PubMed ID: 20347105 [TBL] [Abstract][Full Text] [Related]
19. Characterization of kintoki bean (Phaseolus vulgaris) alpha-amylase inhibitor: inhibitory activities against human salivary and porcine pancreatic alpha-amylases and activity changes by proteolytic digestion. Yoshikawa H; Kotaru M; Tanaka C; Ikeuchi T; Kawabata M J Nutr Sci Vitaminol (Tokyo); 1999 Dec; 45(6):797-802. PubMed ID: 10737233 [TBL] [Abstract][Full Text] [Related]
20. Biochemical characterisation of α-amylase inhibitors from Achyranthes aspera and their interactions with digestive amylases of coleopteran and lepidopteran insects. Hivrale VK; Chougule NP; Giri AP; Chhabda PJ; Kachole MS J Sci Food Agric; 2011 Aug; 91(10):1773-80. PubMed ID: 21445897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]