These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 18321066)
1. Ubiquitylation of proliferating cell nuclear antigen and recruitment of human DNA polymerase eta. Nikolaishvili-Feinberg N; Jenkins GS; Nevis KR; Staus DP; Scarlett CO; Unsal-Kaçmaz K; Kaufmann WK; Cordeiro-Stone M Biochemistry; 2008 Apr; 47(13):4141-50. PubMed ID: 18321066 [TBL] [Abstract][Full Text] [Related]
2. Ubiquitin-dependent regulation of translesion polymerases. Chun AC; Jin DY Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045 [TBL] [Abstract][Full Text] [Related]
3. DNA polymerases eta and kappa are responsible for error-free translesion DNA synthesis activity over a cis-syn thymine dimer in Xenopus laevis oocyte extracts. Yagi Y; Ogawara D; Iwai S; Hanaoka F; Akiyama M; Maki H DNA Repair (Amst); 2005 Nov; 4(11):1252-69. PubMed ID: 16055392 [TBL] [Abstract][Full Text] [Related]
4. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells. Sekimoto T; Oda T; Pozo FM; Murakumo Y; Masutani C; Hanaoka F; Yamashita T Mol Cell; 2010 Jan; 37(1):79-89. PubMed ID: 20129057 [TBL] [Abstract][Full Text] [Related]
5. Effect of 8-oxoguanine and abasic site DNA lesions on in vitro elongation by human DNA polymerase in the presence of replication protein A and proliferating-cell nuclear antigen. Locatelli GA; Pospiech H; Tanguy Le Gac N; van Loon B; Hubscher U; Parkkinen S; Syväoja JE; Villani G Biochem J; 2010 Aug; 429(3):573-82. PubMed ID: 20528769 [TBL] [Abstract][Full Text] [Related]
6. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Haracska L; Unk I; Prakash L; Prakash S Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6477-82. PubMed ID: 16611731 [TBL] [Abstract][Full Text] [Related]
7. A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification. Langerak P; Nygren AO; Krijger PH; van den Berk PC; Jacobs H J Exp Med; 2007 Aug; 204(8):1989-98. PubMed ID: 17664295 [TBL] [Abstract][Full Text] [Related]
8. Rad6/Rad18 Competes with DNA Polymerases η and δ for PCNA Encircling DNA. Li M; Larsen L; Hedglin M Biochemistry; 2020 Feb; 59(4):407-416. PubMed ID: 31887036 [TBL] [Abstract][Full Text] [Related]
9. Localization of Y-family polymerases and the DNA polymerase switch in mammalian cells. Kannouche P; Lehmann A Methods Enzymol; 2006; 408():407-15. PubMed ID: 16793383 [TBL] [Abstract][Full Text] [Related]
11. Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication. Acharya N; Brahma A; Haracska L; Prakash L; Prakash S Mol Cell Biol; 2007 Oct; 27(20):7266-72. PubMed ID: 17709386 [TBL] [Abstract][Full Text] [Related]
12. Requirements for PCNA monoubiquitination in human cell-free extracts. Schmutz V; Wagner J; Janel-Bintz R; Fuchs RP; Cordonnier AM DNA Repair (Amst); 2007 Dec; 6(12):1726-31. PubMed ID: 17669698 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis thaliana Y-family DNA polymerase eta catalyses translesion synthesis and interacts functionally with PCNA2. Anderson HJ; Vonarx EJ; Pastushok L; Nakagawa M; Katafuchi A; Gruz P; Di Rubbo A; Grice DM; Osmond MJ; Sakamoto AN; Nohmi T; Xiao W; Kunz BA Plant J; 2008 Sep; 55(6):895-908. PubMed ID: 18494853 [TBL] [Abstract][Full Text] [Related]
14. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Andersen PL; Xu F; Xiao W Cell Res; 2008 Jan; 18(1):162-73. PubMed ID: 18157158 [TBL] [Abstract][Full Text] [Related]
15. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome. Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143 [TBL] [Abstract][Full Text] [Related]
16. PCNA ubiquitination-independent activation of polymerase η during somatic hypermutation and DNA damage tolerance. Krijger PH; van den Berk PC; Wit N; Langerak P; Jansen JG; Reynaud CA; de Wind N; Jacobs H DNA Repair (Amst); 2011 Oct; 10(10):1051-9. PubMed ID: 21889916 [TBL] [Abstract][Full Text] [Related]
17. Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. Ogi T; Kannouche P; Lehmann AR J Cell Sci; 2005 Jan; 118(Pt 1):129-36. PubMed ID: 15601657 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the specialized DNA polymerase eta: revisiting the biological relevance of its PCNA- and ubiquitin-binding motifs. Despras E; Delrieu N; Garandeau C; Ahmed-Seghir S; Kannouche PL Environ Mol Mutagen; 2012 Dec; 53(9):752-65. PubMed ID: 23076824 [TBL] [Abstract][Full Text] [Related]
19. A single amino acid change (E85K) in human PCNA that leads, relative to wild type, to enhanced DNA synthesis by DNA polymerase delta past nucleotide base lesions (TLS) as well as on unmodified templates. Fisher PA; Moutsiakis DL; McConnell M; Miller H; Mozzherin DJ Biochemistry; 2004 Dec; 43(50):15915-21. PubMed ID: 15595847 [TBL] [Abstract][Full Text] [Related]
20. Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Acharya N; Yoon JH; Gali H; Unk I; Haracska L; Johnson RE; Hurwitz J; Prakash L; Prakash S Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17724-9. PubMed ID: 19001268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]