These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
553 related articles for article (PubMed ID: 18321098)
1. Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. Manolikas T; Herrmann T; Meier BH J Am Chem Soc; 2008 Mar; 130(12):3959-66. PubMed ID: 18321098 [TBL] [Abstract][Full Text] [Related]
2. High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin. Seidel K; Etzkorn M; Heise H; Becker S; Baldus M Chembiochem; 2005 Sep; 6(9):1638-47. PubMed ID: 16094694 [TBL] [Abstract][Full Text] [Related]
3. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. Zech SG; Wand AJ; McDermott AE J Am Chem Soc; 2005 Jun; 127(24):8618-26. PubMed ID: 15954766 [TBL] [Abstract][Full Text] [Related]
4. Dipolar chemical shift correlation spectroscopy for homonuclear carbon distance measurements in proteins in the solid state: application to structure determination and refinement. Peng X; Libich D; Janik R; Harauz G; Ladizhansky V J Am Chem Soc; 2008 Jan; 130(1):359-69. PubMed ID: 18072776 [TBL] [Abstract][Full Text] [Related]
5. 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. Loquet A; Bardiaux B; Gardiennet C; Blanchet C; Baldus M; Nilges M; Malliavin T; Böckmann A J Am Chem Soc; 2008 Mar; 130(11):3579-89. PubMed ID: 18284240 [TBL] [Abstract][Full Text] [Related]
6. Probing molecular motion by double-quantum (13C,13C) solid-state NMR spectroscopy: application to ubiquitin. Schneider R; Seidel K; Etzkorn M; Lange A; Becker S; Baldus M J Am Chem Soc; 2010 Jan; 132(1):223-33. PubMed ID: 20000710 [TBL] [Abstract][Full Text] [Related]
7. Determination of global structure from distance and orientation constraints in biological solids using solid-state NMR spectroscopy. Andreas LB; Mehta AK; Mehta MA J Am Chem Soc; 2007 Dec; 129(49):15233-9. PubMed ID: 17990880 [TBL] [Abstract][Full Text] [Related]
8. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
9. 3D NMR spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations. Heise H; Seidel K; Etzkorn M; Becker S; Baldus M J Magn Reson; 2005 Mar; 173(1):64-74. PubMed ID: 15705514 [TBL] [Abstract][Full Text] [Related]
10. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR. Luo W; Yao X; Hong M J Am Chem Soc; 2005 May; 127(17):6402-8. PubMed ID: 15853348 [TBL] [Abstract][Full Text] [Related]
11. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. Lorieau JL; McDermott AE J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274 [TBL] [Abstract][Full Text] [Related]
12. Determination of the oligomeric number and intermolecular distances of membrane protein assemblies by anisotropic 1H-driven spin diffusion NMR spectroscopy. Luo W; Hong M J Am Chem Soc; 2006 Jun; 128(22):7242-51. PubMed ID: 16734478 [TBL] [Abstract][Full Text] [Related]
13. Assignment of the backbone resonances for microcrystalline ubiquitin. Igumenova TI; Wand AJ; McDermott AE J Am Chem Soc; 2004 Apr; 126(16):5323-31. PubMed ID: 15099118 [TBL] [Abstract][Full Text] [Related]
14. Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. Tycko R; Ishii Y J Am Chem Soc; 2003 Jun; 125(22):6606-7. PubMed ID: 12769550 [TBL] [Abstract][Full Text] [Related]
15. Determination of internuclear distances in uniformly labeled molecules by rotational-resonance solid-state NMR. Williamson PT; Verhoeven A; Ernst M; Meier BH J Am Chem Soc; 2003 Mar; 125(9):2718-22. PubMed ID: 12603160 [TBL] [Abstract][Full Text] [Related]
16. Experimental and theoretical investigation of the 13C and 15N chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe. Strohmeier M; Grant DM J Am Chem Soc; 2004 Jan; 126(3):966-77. PubMed ID: 14733574 [TBL] [Abstract][Full Text] [Related]
17. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. Zhou DH; Shah G; Cormos M; Mullen C; Sandoz D; Rienstra CM J Am Chem Soc; 2007 Sep; 129(38):11791-801. PubMed ID: 17725352 [TBL] [Abstract][Full Text] [Related]
18. G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination. Shen Y; Atreya HS; Liu G; Szyperski T J Am Chem Soc; 2005 Jun; 127(25):9085-99. PubMed ID: 15969587 [TBL] [Abstract][Full Text] [Related]
19. Solid-state 13C and 1H spin diffusion NMR analyses of the microfibril structure for bacterial cellulose. Masuda K; Adachi M; Hirai A; Yamamoto H; Kaji H; Horii F Solid State Nucl Magn Reson; 2003 Jun; 23(4):198-212. PubMed ID: 12787903 [TBL] [Abstract][Full Text] [Related]
20. Double-nucleus enhanced recoupling for efficient 13C MAS NMR correlation spectroscopy of perdeuterated proteins. Akbey U; Oschkinat H; van Rossum BJ J Am Chem Soc; 2009 Dec; 131(47):17054-5. PubMed ID: 19929015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]