BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18321603)

  • 1. In vitro-refolding of a single-chain Fv fragment in the presence of heteroaromatic thiols.
    Patil G; Rudolph R; Lange C
    J Biotechnol; 2008 Apr; 134(3-4):218-21. PubMed ID: 18321603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate enhancement of the oxidative folding of lysozyme by the use of aromatic thiol containing redox buffers.
    Gurbhele-Tupkar MC; Perez LR; Silva Y; Lees WJ
    Bioorg Med Chem; 2008 Mar; 16(5):2579-90. PubMed ID: 18065232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aromatic thiol pKa effects on the folding rate of a disulfide containing protein.
    Gough JD; Gargano JM; Donofrio AE; Lees WJ
    Biochemistry; 2003 Oct; 42(40):11787-97. PubMed ID: 14529290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ortho- and meta-substituted aromatic thiols are efficient redox buffers that increase the folding rate of a disulfide-containing protein.
    Gough JD; Barrett EJ; Silva Y; Lees WJ
    J Biotechnol; 2006 Aug; 125(1):39-47. PubMed ID: 16616966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of redox buffer properties on the folding of a disulfide-containing protein: dependence upon pH, thiol pKa, and thiol concentration.
    Gough JD; Lees WJ
    J Biotechnol; 2005 Feb; 115(3):279-90. PubMed ID: 15639090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the oxidative folding of lysozyme at a high protein concentration using aromatic thiols versus glutathione.
    Madar DJ; Patel AS; Lees WJ
    J Biotechnol; 2009 Jul; 142(3-4):214-9. PubMed ID: 19477205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative folding of lysozyme with aromatic dithiols, and aliphatic and aromatic monothiols.
    Patel AS; Lees WJ
    Bioorg Med Chem; 2012 Jan; 20(2):1020-8. PubMed ID: 22197395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli.
    Jurado P; Ritz D; Beckwith J; de Lorenzo V; Fernández LA
    J Mol Biol; 2002 Jun; 320(1):1-10. PubMed ID: 12079330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of the conserved disulfide bridges from the scFv fragment of an antibody: effects on folding kinetics and aggregation.
    Ramm K; Gehrig P; Plückthun A
    J Mol Biol; 1999 Jul; 290(2):535-46. PubMed ID: 10390351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis of reduction of disulfide by selenol.
    Singh R; Kats L
    Anal Biochem; 1995 Nov; 232(1):86-91. PubMed ID: 8600838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased catalytic activity of protein disulfide isomerase using aromatic thiol based redox buffers.
    Gough JD; Lees WJ
    Bioorg Med Chem Lett; 2005 Feb; 15(3):777-81. PubMed ID: 15664856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of positively charged redox molecules on disulfide-coupled protein folding.
    Okumura M; Shimamoto S; Nakanishi T; Yoshida Y; Konogami T; Maeda S; Hidaka Y
    FEBS Lett; 2012 Nov; 586(21):3926-30. PubMed ID: 23044009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation.
    Lu D; Liu Z
    J Phys Chem B; 2008 Nov; 112(47):15127-33. PubMed ID: 18959394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation.
    De Bernardez Clark E; Hevehan D; Szela S; Maachupalli-Reddy J
    Biotechnol Prog; 1998; 14(1):47-54. PubMed ID: 9496669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide isomerization and thiol-disulfide exchange of long neurotoxins from the venom of Ophiophagus hannah.
    Chang LS; Lin SR; Huang HB
    Arch Biochem Biophys; 2006 Oct; 454(2):181-8. PubMed ID: 16962984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes.
    Rubino FM; Pitton M; Brambilla G; Colombi A
    J Mass Spectrom; 2006 Dec; 41(12):1578-93. PubMed ID: 17136764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P
    Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli.
    Glockshuber R; Schmidt T; Plückthun A
    Biochemistry; 1992 Feb; 31(5):1270-9. PubMed ID: 1736986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionization-reactivity relationships for cysteine thiols in polypeptides.
    Bulaj G; Kortemme T; Goldenberg DP
    Biochemistry; 1998 Jun; 37(25):8965-72. PubMed ID: 9636038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol-disulfide redox equilibria of glutathione metaboloma compounds investigated by tandem mass spectrometry.
    Rubino FM; Pitton M; Caneva E; Pappini M; Colombi A
    Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3935-48. PubMed ID: 19003853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.