BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18321928)

  • 21. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II.
    Jacko AM; Nan L; Li S; Tan J; Zhao J; Kass DJ; Zhao Y
    Cell Death Dis; 2016 Nov; 7(11):e2474. PubMed ID: 27853171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different domains regulate homomeric and heteromeric complex formation among type I and type II transforming growth factor-beta receptors.
    Rechtman MM; Nakaryakov A; Shapira KE; Ehrlich M; Henis YI
    J Biol Chem; 2009 Mar; 284(12):7843-52. PubMed ID: 19147499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs.
    Huang T; David L; Mendoza V; Yang Y; Villarreal M; De K; Sun L; Fang X; López-Casillas F; Wrana JL; Hinck AP
    EMBO J; 2011 Apr; 30(7):1263-76. PubMed ID: 21423151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of transforming growth factor-beta type II receptor signaling accelerates tooth formation in mouse first branchial arch explants.
    Chai Y; Zhao J; Mogharei A; Xu B; Bringas P; Shuler C; Warburton D
    Mech Dev; 1999 Aug; 86(1-2):63-74. PubMed ID: 10446266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prenatal lung epithelial cell-specific abrogation of Alk3-bone morphogenetic protein signaling causes neonatal respiratory distress by disrupting distal airway formation.
    Sun J; Chen H; Chen C; Whitsett JA; Mishina Y; Bringas P; Ma JC; Warburton D; Shi W
    Am J Pathol; 2008 Mar; 172(3):571-82. PubMed ID: 18258849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors.
    Miettinen PJ; Ebner R; Lopez AR; Derynck R
    J Cell Biol; 1994 Dec; 127(6 Pt 2):2021-36. PubMed ID: 7806579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of murine cranial suture patency mediated by a dominant negative transforming growth factor-beta receptor adenovirus.
    Song HM; Fong KD; Nacamuli RP; Warren SM; Fang TD; Mathy JA; Cowan CM; Aalami OO; Longaker MT
    Plast Reconstr Surg; 2004 May; 113(6):1685-97. PubMed ID: 15114130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An epigenetic auto-feedback loop regulates TGF-β type II receptor expression and function in NSCLC.
    Yang S; Cho YJ; Jin L; Yuan G; Datta A; Buckhaults P; Datta PK
    Oncotarget; 2015 Oct; 6(32):33237-52. PubMed ID: 26356817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alk5-mediated transforming growth factor β signaling acts upstream of fibroblast growth factor 10 to regulate the proliferation and maintenance of dental epithelial stem cells.
    Zhao H; Li S; Han D; Kaartinen V; Chai Y
    Mol Cell Biol; 2011 May; 31(10):2079-89. PubMed ID: 21402782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor.
    Liu S; Nheu T; Luwor R; Nicholson SE; Zhu HJ
    J Biol Chem; 2015 Jul; 290(29):17894-17908. PubMed ID: 26032413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transforming growth factor beta1 receptor II is downregulated by E1A in adenovirus-infected cells.
    Tarakanova VL; Wold WS
    J Virol; 2003 Sep; 77(17):9324-36. PubMed ID: 12915548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints.
    Seo HS; Serra R
    Dev Biol; 2007 Oct; 310(2):304-16. PubMed ID: 17822689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesodermal ALK5 controls lung myofibroblast versus lipofibroblast cell fate.
    Li A; Ma S; Smith SM; Lee MK; Fischer A; Borok Z; Bellusci S; Li C; Minoo P
    BMC Biol; 2016 Mar; 14():19. PubMed ID: 26984772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of extracellular signal-regulated kinase by TGF-beta1 via TbetaRII and Smad7 dependent mechanisms in human bronchial epithelial BEP2D cells.
    Huo YY; Hu YC; He XR; Wang Y; Song BQ; Zhou PK; Zhu MX; Li G; Wu DC
    Cell Biol Toxicol; 2007 Mar; 23(2):113-28. PubMed ID: 17096210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis.
    Guo Y; Kyprianou N
    Cancer Res; 1999 Mar; 59(6):1366-71. PubMed ID: 10096572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of transforming growth factor-beta type I and type II receptors is altered in rat lungs undergoing bleomycin-induced pulmonary fibrosis.
    Zhao Y; Shah DU
    Exp Mol Pathol; 2000 Oct; 69(2):67-78. PubMed ID: 11001857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway.
    Bian Y; Terse A; Du J; Hall B; Molinolo A; Zhang P; Chen W; Flanders KC; Gutkind JS; Wakefield LM; Kulkarni AB
    Cancer Res; 2009 Jul; 69(14):5918-26. PubMed ID: 19584284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in levels of mRNAs of transforming growth factor (TGF)-beta1, -beta2, -beta3, TGF-beta type II receptor and sulfated glycoprotein-2 during apoptosis of mouse uterine epithelium.
    Wada K; Nomura S; Morii E; Kitamura Y; Nishizawa Y; Miyake A; Terada N
    J Steroid Biochem Mol Biol; 1996 Dec; 59(5-6):367-75. PubMed ID: 9010342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II.
    Guerrero-Esteo M; Sanchez-Elsner T; Letamendia A; Bernabeu C
    J Biol Chem; 2002 Aug; 277(32):29197-209. PubMed ID: 12015308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TGF-beta type II receptor-deficient thymocytes develop normally but demonstrate increased CD8+ proliferation in vivo.
    Levéen P; Carlsén M; Makowska A; Oddsson S; Larsson J; Goumans MJ; Cilio CM; Karlsson S
    Blood; 2005 Dec; 106(13):4234-40. PubMed ID: 16131565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.