BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18322101)

  • 1. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition.
    Leng Y; Liang MH; Ren M; Marinova Z; Leeds P; Chuang DM
    J Neurosci; 2008 Mar; 28(10):2576-88. PubMed ID: 18322101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First in Class Dual Non-ATP-Competitive Glycogen Synthase Kinase 3β/Histone Deacetylase Inhibitors as a Potential Therapeutic to Treat Alzheimer's Disease.
    Santini A; Tassinari E; Poeta E; Loi M; Ciani E; Trazzi S; Piccarducci R; Daniele S; Martini C; Pagliarani B; Tarozzi A; Bersani M; Spyrakis F; Danková D; Olsen CA; Soldati R; Tumiatti V; Montanari S; De Simone A; Milelli A
    ACS Chem Neurosci; 2024 Jun; 15(11):2099-2111. PubMed ID: 38747979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines.
    Hummel R; Dorochow E; Zander S; Ritter K; Hahnefeld L; Gurke R; Tegeder I; Schäfer MKE
    Cells; 2024 Apr; 13(9):. PubMed ID: 38727269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of primitive hematopoiesis by class I histone deacetylases.
    Shah RR; Koniski A; Shinde M; Blythe SA; Fass DM; Haggarty SJ; Palis J; Klein PS
    Dev Dyn; 2013 Feb; 242(2):108-21. PubMed ID: 23184530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valproic acid ameliorates cauda equina injury by suppressing HDAC2-mediated ferroptosis.
    Kong Q; Li F; Sun K; Sun X; Ma J
    CNS Neurosci Ther; 2024 Apr; 30(4):e14524. PubMed ID: 38105511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Neuroprotective Effects of Lithium in Ischemic Stroke: A literature review.
    Wang W; Lu D; Shi Y; Wang Y
    Int J Med Sci; 2024; 21(2):284-298. PubMed ID: 38169754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lithium on aggression in Drosophila.
    Wang R; Ma B; Shi K; Wu F; Zhou C
    Neuropsychopharmacology; 2023 Apr; 48(5):754-763. PubMed ID: 36253547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder.
    Chiu CT; Wang Z; Hunsberger JG; Chuang DM
    Pharmacol Rev; 2013 Jan; 65(1):105-42. PubMed ID: 23300133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium down-regulates histone deacetylase 1 (HDAC1) and induces degradation of mutant huntingtin.
    Wu S; Zheng SD; Huang HL; Yan LC; Yin XF; Xu HN; Zhang KJ; Gui JH; Chu L; Liu XY
    J Biol Chem; 2013 Dec; 288(49):35500-10. PubMed ID: 24165128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain.
    Kim HJ; Leeds P; Chuang DM
    J Neurochem; 2009 Aug; 110(4):1226-40. PubMed ID: 19549282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer´s disease-like phenotype of a commonly used mouse model.
    Cuadrado-Tejedor M; Ricobaraza AL; Torrijo R; Franco R; Garcia-Osta A
    Curr Pharm Des; 2013; 19(28):5076-84. PubMed ID: 23448463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models.
    Qing H; He G; Ly PT; Fox CJ; Staufenbiel M; Cai F; Zhang Z; Wei S; Sun X; Chen CH; Zhou W; Wang K; Song W
    J Exp Med; 2008 Nov; 205(12):2781-9. PubMed ID: 18955571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized, Precision Medicine to Cure Alzheimer's Dementia: Approach #1.
    Fessel J
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress and Implications from Genetic Studies of Bipolar Disorder.
    Kong L; Chen Y; Shen Y; Zhang D; Wei C; Lai J; Hu S
    Neurosci Bull; 2024 Jan; ():. PubMed ID: 38206551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture.
    Maragakis NJ; de Carvalho M; Weiss MD
    Ann Clin Transl Neurol; 2023 Nov; 10(11):1948-1971. PubMed ID: 37641443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Glycogen Synthase Kinase-3β in the Zinc-Mediated Neuroprotective Effect of Metformin in Rats with Glutamate Neurotoxicity.
    Oruc A; Oruc KY; Yanar K; Mengi M; Caglar A; Kurt BO; Altan M; Sonmez OF; Cakatay U; Uzun H; Simsek G
    Biol Trace Elem Res; 2024 Jan; 202(1):233-245. PubMed ID: 37071257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis.
    Sever B; Ciftci H; DeMirci H; Sever H; Ocak F; Yulug B; Tateishi H; Tateishi T; Otsuka M; Fujita M; Başak AN
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose optimization of early high-dose valproic acid for neuroprotection in a swine cardiac arrest model.
    Hsu CH; Tiba MH; McCracken BM; Colmenero CI; Pickell Z; Leander DC; Weitzel AM; Raghunayakula S; Liao J; Jinka T; Cummings BC; Pai MP; Alam HB; Ward KR; Sanderson TH; Neumar RW
    Resusc Plus; 2020; 1-2():100007. PubMed ID: 34223294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-9-3p Aggravates Cerebral Ischemia/Reperfusion Injury by Targeting Fibroblast Growth Factor 19 (FGF19) to Inactivate GSK-3β/Nrf2/ARE Signaling.
    Zhou Y; Yang L; Bo C; Zhang X; Zhang J; Li Y
    Neuropsychiatr Dis Treat; 2021; 17():1989-2002. PubMed ID: 34177264
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.