These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 18323109)
1. Response of atmospheric particulate matter to changes in precursor emissions: a comparison of three air quality models. Pun BK; Seigneur C; Bailey EM; Gautney LL; Douglas SG; Haney JL; Kumar N Environ Sci Technol; 2008 Feb; 42(3):831-7. PubMed ID: 18323109 [TBL] [Abstract][Full Text] [Related]
2. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States. Tsimpidi AP; Karydis VA; Pandis SN J Air Waste Manag Assoc; 2008 Nov; 58(11):1463-73. PubMed ID: 19044162 [TBL] [Abstract][Full Text] [Related]
3. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896 [TBL] [Abstract][Full Text] [Related]
4. Response of inorganic fine particulate matter to emission changes of sulfur dioxide and ammonia: the eastern United States as a case study. Tsimpidi AP; Karydis VA; Pandis SN J Air Waste Manag Assoc; 2007 Dec; 57(12):1489-98. PubMed ID: 18200934 [TBL] [Abstract][Full Text] [Related]
5. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions. Hogrefe C; Isukapalli SS; Tang X; Georgopoulos PG; He S; Zalewsky EE; Hao W; Ku JY; Key T; Sistla G J Air Waste Manag Assoc; 2011 Jan; 61(1):92-108. PubMed ID: 21305893 [TBL] [Abstract][Full Text] [Related]
6. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas. Hou X; Strickland MJ; Liao KJ Environ Res; 2015 Feb; 137():475-84. PubMed ID: 25701729 [TBL] [Abstract][Full Text] [Related]
7. Application and evaluation of two air quality models for particulate matter for a southeastern U.S. episode. Zhang Y; Pun B; Wu SY; Vijayaraghavan K; Seigneur C J Air Waste Manag Assoc; 2004 Dec; 54(12):1478-93. PubMed ID: 15648386 [TBL] [Abstract][Full Text] [Related]
8. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States. Pinder RW; Adams PJ; Pandis SN Environ Sci Technol; 2007 Jan; 41(2):380-6. PubMed ID: 17310695 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the SO2 and NOx offset ratio method to account for secondary PM2.5 formation. Guerra SA; Olsen SR; Anderson JJ J Air Waste Manag Assoc; 2014 Mar; 64(3):265-71. PubMed ID: 24701685 [TBL] [Abstract][Full Text] [Related]
10. Current and future linked responses of ozone and PM2.5 to emission controls. Liao KJ; Tagaris E; Napelenok SL; Manomaiphiboon K; Woo JH; Amar P; He S; Russell AG Environ Sci Technol; 2008 Jul; 42(13):4670-5. PubMed ID: 18677989 [TBL] [Abstract][Full Text] [Related]
11. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074 [TBL] [Abstract][Full Text] [Related]
12. Modeling variability in air pollution-related health damages from individual airport emissions. Penn SL; Boone ST; Harvey BC; Heiger-Bernays W; Tripodis Y; Arunachalam S; Levy JI Environ Res; 2017 Jul; 156():791-800. PubMed ID: 28501677 [TBL] [Abstract][Full Text] [Related]
13. The sensitivity of PM2.5 source-receptor relationships to atmospheric chemistry and transport in a three-dimensional air quality model. Seigneur C; Tonne C; Vijayaraghavan K; Pal P; Levin L J Air Waste Manag Assoc; 2000 Mar; 50(3):428-35. PubMed ID: 10734714 [TBL] [Abstract][Full Text] [Related]
14. Using the Community Multiscale Air Quality (CMAQ) model to estimate public health impacts of PM2.5 from individual power plants. Buonocore JJ; Dong X; Spengler JD; Fu JS; Levy JI Environ Int; 2014 Jul; 68():200-8. PubMed ID: 24769126 [TBL] [Abstract][Full Text] [Related]
15. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States. Odman MT; Hu Y; Russell AG; Hanedar A; Boylan JW; Brewer PF J Environ Manage; 2009 Jul; 90(10):3155-68. PubMed ID: 19556055 [TBL] [Abstract][Full Text] [Related]
16. Optimization of multipollutant air quality management strategies: A case study for five cities in the United States. Liao KJ; Hou X J Air Waste Manag Assoc; 2015 Jun; 65(6):732-42. PubMed ID: 25976486 [TBL] [Abstract][Full Text] [Related]
17. Accountability analysis of title IV phase 2 of the 1990 Clean Air Act Amendments. Morgenstern RD; Harrington W; Shih JS; Bell ML; Res Rep Health Eff Inst; 2012 Nov; (168):5-35. PubMed ID: 23409509 [TBL] [Abstract][Full Text] [Related]
18. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia. Qiu X; Duan L; Cai S; Yu Q; Wang S; Chai F; Gao J; Li Y; Xu Z J Environ Sci (China); 2017 Jul; 57():383-390. PubMed ID: 28647259 [TBL] [Abstract][Full Text] [Related]
19. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():903-917. PubMed ID: 29677550 [TBL] [Abstract][Full Text] [Related]
20. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]