BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 18323537)

  • 1. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa.
    Morin RD; Aksay G; Dolgosheina E; Ebhardt HA; Magrini V; Mardis ER; Sahinalp SC; Unrau PJ
    Genome Res; 2008 Apr; 18(4):571-84. PubMed ID: 18323537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice.
    Johnson C; Kasprzewska A; Tennessen K; Fernandes J; Nan GL; Walbot V; Sundaresan V; Vance V; Bowman LH
    Genome Res; 2009 Aug; 19(8):1429-40. PubMed ID: 19584097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of endogenous small non-coding RNAs in Oryza sativa.
    Chen Z; Zhang J; Kong J; Li S; Fu Y; Li S; Zhang H; Li Y; Zhu Y
    Genetica; 2006; 128(1-3):21-31. PubMed ID: 17028937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.
    Jones-Rhoades MW; Bartel DP
    Mol Cell; 2004 Jun; 14(6):787-99. PubMed ID: 15200956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains.
    Zhu QH; Spriggs A; Matthew L; Fan L; Kennedy G; Gubler F; Helliwell C
    Genome Res; 2008 Sep; 18(9):1456-65. PubMed ID: 18687877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conifers have a unique small RNA silencing signature.
    Dolgosheina EV; Morin RD; Aksay G; Sahinalp SC; Magrini V; Mardis ER; Mattsson J; Unrau PJ
    RNA; 2008 Aug; 14(8):1508-15. PubMed ID: 18566193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage.
    Jeong DH; Park S; Zhai J; Gurazada SG; De Paoli E; Meyers BC; Green PJ
    Plant Cell; 2011 Dec; 23(12):4185-207. PubMed ID: 22158467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.
    Sunkar R; Zhu JK
    Plant Cell; 2004 Aug; 16(8):2001-19. PubMed ID: 15258262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the small RNA component of the transcriptome.
    Lu C; Tej SS; Luo S; Haudenschild CD; Meyers BC; Green PJ
    Science; 2005 Sep; 309(5740):1567-9. PubMed ID: 16141074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and evolution of microRNA genes derived from repetitive elements and duplication events in plants.
    Sun J; Zhou M; Mao Z; Li C
    PLoS One; 2012; 7(4):e34092. PubMed ID: 22523544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small RNAs in angiosperms: sequence characteristics, distribution and generation.
    Chen D; Meng Y; Ma X; Mao C; Bai Y; Cao J; Gu H; Wu P; Chen M
    Bioinformatics; 2010 Jun; 26(11):1391-4. PubMed ID: 20378553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice.
    Liu B; Li P; Li X; Liu C; Cao S; Chu C; Cao X
    Plant Physiol; 2005 Sep; 139(1):296-305. PubMed ID: 16126864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA.
    Nakano M; Nobuta K; Vemaraju K; Tej SS; Skogen JW; Meyers BC
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D731-5. PubMed ID: 16381968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of small RNAs in late developmental stage of rice anthers.
    Fujioka T; Kaneko F; Kazama T; Suwabe K; Suzuki G; Makino A; Mae T; Endo M; Kawagishi-Kobayashi M; Watanabe M
    Genes Genet Syst; 2008 Jun; 83(3):281-4. PubMed ID: 18670140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development.
    Song X; Wang D; Ma L; Chen Z; Li P; Cui X; Liu C; Cao S; Chu C; Tao Y; Cao X
    Plant J; 2012 Aug; 71(3):378-89. PubMed ID: 22443269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants.
    Zheng Y; Li YF; Sunkar R; Zhang W
    Nucleic Acids Res; 2012 Feb; 40(4):e28. PubMed ID: 22140118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis and function of rice small RNAs from non-coding RNA precursors.
    Arikit S; Zhai J; Meyers BC
    Curr Opin Plant Biol; 2013 May; 16(2):170-9. PubMed ID: 23466255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of unique small RNA populations from rice grain.
    Heisel SE; Zhang Y; Allen E; Guo L; Reynolds TL; Yang X; Kovalic D; Roberts JK
    PLoS One; 2008 Aug; 3(8):e2871. PubMed ID: 18716673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis.
    Song X; Li P; Zhai J; Zhou M; Ma L; Liu B; Jeong DH; Nakano M; Cao S; Liu C; Chu C; Wang XJ; Green PJ; Meyers BC; Cao X
    Plant J; 2012 Feb; 69(3):462-74. PubMed ID: 21973320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.