BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 18323620)

  • 1. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The architecture of metal coordination groups in proteins.
    Harding MM
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):849-59. PubMed ID: 15103130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites.
    Sigel RK; Sigel H
    Acc Chem Res; 2010 Jul; 43(7):974-84. PubMed ID: 20235593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal protein interactions.
    Sarkar B
    Prog Food Nutr Sci; 1987; 11(3-4):363-400. PubMed ID: 3328221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility of metal binding sites in proteins on a database scale.
    Babor M; Greenblatt HM; Edelman M; Sobolev V
    Proteins; 2005 May; 59(2):221-30. PubMed ID: 15726624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of metal interaction geometries for protein-ligand docking.
    Seebeck B; Reulecke I; Kämper A; Rarey M
    Proteins; 2008 May; 71(3):1237-54. PubMed ID: 18041759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small revisions to predicted distances around metal sites in proteins.
    Harding MM
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):678-82. PubMed ID: 16699196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico identification of putative metal binding motifs.
    Thilakaraj R; Raghunathan K; Anishetty S; Pennathur G
    Bioinformatics; 2007 Feb; 23(3):267-71. PubMed ID: 17148509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biometal binding-site mimicry with modular, hetero-bifunctionally modified architecture encompassing a Trp/His motif: insights into spatiotemporal noncovalent interactions from a comparative spectroscopic study.
    Yang CM
    Dalton Trans; 2011 Mar; 40(12):3008-27. PubMed ID: 21331408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors governing the metal coordination number in metal complexes from Cambridge Structural Database analyses.
    Dudev M; Wang J; Dudev T; Lim C
    J Phys Chem B; 2006 Feb; 110(4):1889-95. PubMed ID: 16471760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the side chain length of Asp and Glu on coordination structure of Cu(2+) in a de novo designed protein.
    Shiga D; Nakane D; Inomata T; Masuda H; Oda M; Noda M; Uchiyama S; Fukui K; Takano Y; Nakamura H; Mizuno T; Tanaka T
    Biopolymers; 2009 Nov; 91(11):907-16. PubMed ID: 19598226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-metal ion, Ni(II) and Cu(II), binding alpha-helical coiled coil peptide.
    Tanaka T; Mizuno T; Fukui S; Hiroaki H; Oku J; Kanaori K; Tajima K; Shirakawa M
    J Am Chem Soc; 2004 Nov; 126(43):14023-8. PubMed ID: 15506765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATCUN-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis.
    Sankararamakrishnan R; Verma S; Kumar S
    Proteins; 2005 Jan; 58(1):211-21. PubMed ID: 15508143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic identification of different types of copper centers generated in synthetic four-helix bundle proteins.
    Schnepf R; Haehnel W; Wieghardt K; Hildebrandt P
    J Am Chem Soc; 2004 Nov; 126(44):14389-99. PubMed ID: 15521758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors.
    Lu Y
    Curr Opin Chem Biol; 2005 Apr; 9(2):118-26. PubMed ID: 15811795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Zinc proteome: a tale of stability and functionality.
    Sousa SF; Lopes AB; Fernandes PA; Ramos MJ
    Dalton Trans; 2009 Oct; (38):7946-56. PubMed ID: 19771357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.