These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18323927)

  • 1. Comparison of various linear depolarization parameters measured by lidar.
    Cairo F; Di Donfrancesco G; Adriani A; Pulvirenti L; Fierli F
    Appl Opt; 1999 Jul; 38(21):4425-32. PubMed ID: 18323927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reexamination of depolarization in lidar measurements.
    Gimmestad GG
    Appl Opt; 2008 Jul; 47(21):3795-802. PubMed ID: 18641748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-signal method for accurate measurements of depolarization ratio with lidar.
    Reichardt J; Baumgart R; McGee TJ
    Appl Opt; 2003 Aug; 42(24):4909-13. PubMed ID: 12952338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an all-day portable polarization lidar system based on the division-of-focal-plane scheme for atmospheric polarization measurements.
    Kong Z; Ma T; Zheng K; Cheng Y; Gong Z; Hua D; Mei L
    Opt Express; 2021 Nov; 29(23):38512-38526. PubMed ID: 34808903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction technology of a polarization lidar with a complex optical system.
    Di H; Hua H; Cui Y; Hua D; Li B; Song Y
    J Opt Soc Am A Opt Image Sci Vis; 2016 Aug; 33(8):1488-94. PubMed ID: 27505646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme.
    Mattis I; Tesche M; Grein M; Freudenthaler V; Müller D
    Appl Opt; 2009 May; 48(14):2742-51. PubMed ID: 19424398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain.
    Hayman M; Spuler S; Morley B
    Opt Express; 2014 Jul; 22(14):16976-90. PubMed ID: 25090513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications.
    Okamoto H; Sato K; Borovoi A; Ishimoto H; Masuda K; Konoshonkin A; Kustova N
    Opt Express; 2020 Sep; 28(20):29178-29191. PubMed ID: 33114822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling Aerosol Liquid Water Content Using a Polarization Lidar.
    Tan W; Yu Y; Li C; Li J; Kang L; Dong H; Zeng L; Zhu T
    Environ Sci Technol; 2020 Mar; 54(6):3129-3137. PubMed ID: 32092257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical depolarization-ratio-based inversion procedure: lidar measurements of the Eyjafjallajökull ash cloud over the Netherlands.
    Donovan DP; Apituley A
    Appl Opt; 2013 Apr; 52(11):2394-415. PubMed ID: 23670771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations.
    Ansmann A; Wandinger U; Le Rille O; Lajas D; Straume AG
    Appl Opt; 2007 Sep; 46(26):6606-22. PubMed ID: 17846655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles.
    Adachi H; Shibata T; Iwasaka Y; Fujiwara M
    Appl Opt; 2001 Dec; 40(36):6587-95. PubMed ID: 18364966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of multiple scattering on depolarization measurements with spaceborne lidars.
    Reichardt S; Reichardt J
    Appl Opt; 2003 Jun; 42(18):3620-33. PubMed ID: 12833968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology for error analysis and simulation of lidar aerosol measurements.
    Russell PB; Swissler TJ; McCormick MP
    Appl Opt; 1979 Nov; 18(22):3783-97. PubMed ID: 20216694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar.
    Gimmestad G; Forrister H; Grigas T; O'Dowd C
    Sci Rep; 2017 Feb; 7():42337. PubMed ID: 28198389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative method for determining the constant offset in lidar signal.
    Kovalev VA; Wold C; Petkov A; Hao WM
    Appl Opt; 2009 May; 48(13):2559-65. PubMed ID: 19412216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements.
    Cuesta J; Flamant PH
    Appl Opt; 2010 Apr; 49(12):2232-43. PubMed ID: 20411002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.
    Qiu J; Xia H; Shangguan M; Dou X; Li M; Wang C; Shang X; Lin S; Liu J
    Opt Lett; 2017 Nov; 42(21):4454-4457. PubMed ID: 29088186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of multiple scattering from tropospheric aerosols for ground-based backscatter lidar measurements.
    Ackermann J; Völger P; Wiegner M
    Appl Opt; 1999 Aug; 38(24):5195-201. PubMed ID: 18324018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible, near-infrared dual-polarization lidar based on polarization cameras: system design, evaluation and atmospheric measurements.
    Kong Z; Yu J; Gong Z; Hua D; Mei L
    Opt Express; 2022 Aug; 30(16):28514-28533. PubMed ID: 36299045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.