These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18323947)

  • 1. Quantitative hydroxyl concentration time-series measurements in turbulent nonpremixed flames.
    Renfro MW; King GB; Laurendeau NM
    Appl Opt; 1999 Jul; 38(21):4596-608. PubMed ID: 18323947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-series measurements of CH concentration in turbulent CH(4) / air flames by use of picosecond time-resolved laser-induced fluorescence.
    Renfro MW; Klassen MS; King GB; Laurendeau NM
    Opt Lett; 1997 Feb; 22(3):175-7. PubMed ID: 18183140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-point time-series measurementsof hydroxyl concentration in a turbulent nonpremixed flame.
    Zhang J; King GB; Laurendeau NM; Renfro MW
    Appl Opt; 2007 Aug; 46(23):5742-54. PubMed ID: 17694123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-pulse, laser-saturated fluorescence measurements of OH in turbulent nonpremixed flames.
    Lucht RP; Sweeney DW; Laurendeau NM; Drake MC; Lapp M; Pitz RW
    Opt Lett; 1984 Mar; 9(3):90-2. PubMed ID: 19721506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of Raman scattering and laser-induced OH fluorescence in nonpremixed turbulent jet flames.
    Barlow RS; Dibble RW; Lucht RP
    Opt Lett; 1989 Mar; 14(5):263-5. PubMed ID: 19749889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence.
    Reichardt TA; Klassen MS; King GB; Laurendeau NM
    Appl Opt; 1996 Apr; 35(12):2125-39. PubMed ID: 21085341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure.
    Naik SV; Laurendeau NM
    Appl Opt; 2004 Sep; 43(26):5116-25. PubMed ID: 15468714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames.
    Nandula SP; Brown TM; Pitz RW; Debarber PA
    Opt Lett; 1994 Mar; 19(6):414-6. PubMed ID: 19829659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames.
    Kelman JB; Masri AR
    Appl Opt; 1997 May; 36(15):3506-14. PubMed ID: 18253369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-point time-series measurements of minor-species concentrations in a turbulent nonpremixed flame.
    Zhang J; Venkatesan KK; King GB; Laurendeau NM; Renfro MW
    Opt Lett; 2005 Dec; 30(23):3144-6. PubMed ID: 16342703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurements of NO, OH, and the major species in turbulent flames.
    Carter CD; Barlow RS
    Opt Lett; 1994 Feb; 19(4):299-301. PubMed ID: 19829623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond laser-spectroscopy measurement of hydroxyl fluorescence lifetime in flames.
    Bergano NS; Jaanimagi PA; Salour MM; Bechtel JH
    Opt Lett; 1983 Aug; 8(8):443-5. PubMed ID: 19718142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames.
    Mokhov AV; Levinsky HB; van der Meij CE; Jacobs RA
    Appl Opt; 1995 Oct; 34(30):7074-82. PubMed ID: 21060569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl and its concentration profile in methane-air flames.
    Bechtel JH; Teets RE
    Appl Opt; 1979 Dec; 18(24):4138-44. PubMed ID: 20216770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Raman scattering and laser-induced fluorescence for multispecies imaging in turbulent flames.
    Schefer RW; Namazian M; Kelly J
    Opt Lett; 1991 Jun; 16(11):858-60. PubMed ID: 19776809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames.
    Frank JH; Chen X; Patterson BD; Settersten TB
    Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative imaging of temperature and OH in turbulent diffusion flames by using a single laser source.
    Kelman JB; Masri AR
    Appl Opt; 1994 Jun; 33(18):3992-9. PubMed ID: 20935746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames.
    Thomsen DD; Kuligowski FF; Laurendeau NM
    Appl Opt; 1997 May; 36(15):3244-52. PubMed ID: 18253332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
    Chaudhuri S; Wu F; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033005. PubMed ID: 24125342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.