BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1832395)

  • 41. The sarcoplasmic reticulum Ca(2+)-ATPase is depressed in stunned myocardium after ischemia-reperfusion, but remains functionally coupled to sarcoplasmic reticulum-bound glycolytic enzymes.
    Xu KY; Vandegaer K; Becker LC
    Ann N Y Acad Sci; 1998 Sep; 853():376-9. PubMed ID: 10603984
    [No Abstract]   [Full Text] [Related]  

  • 42. PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store.
    Wuytack F; Raeymaekers L; Missiaen L
    Pflugers Arch; 2003 May; 446(2):148-53. PubMed ID: 12739151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Separation of active and inactive (nonphosphorylating) Ca(2+)-ATPase in sarcoplasmic reticulum subfractions from low-frequency-stimulated rabbit muscle.
    Matsushita S; Dux L; Pette D
    FEBS Lett; 1991 Dec; 294(3):203-6. PubMed ID: 1836768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of bepridil on the Ca-dependent ATPase activity of sarcoplasmic reticulum.
    Younès A; Fontanarava C; Schneider JM
    Biochem Pharmacol; 1981 Nov; 30(21):2979-82. PubMed ID: 6459095
    [No Abstract]   [Full Text] [Related]  

  • 45. [Intracellular localization of the caffeine-sensitive form of Ca-dependent ATPase in the sarcoplasmic reticulum].
    Ritov VB; Vekshina OM; Budina NB
    Biull Eksp Biol Med; 1984 Sep; 98(9):317-20. PubMed ID: 6237692
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of Ca²+-ATPase activity (in PMCA and SERCA1).
    Kosk-Kosicka D
    Methods Mol Biol; 2005; 312():343-54. PubMed ID: 21341110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Casein kinase activity in rat mammary gland Golgi vesicles. Phosphorylation of endogenous caseins.
    West DW; Clegg RA
    Eur J Biochem; 1983 Dec; 137(1-2):215-20. PubMed ID: 6581043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Modification of the enzyme system for Ca2+ transport in sarcoplasmic reticulum membranes during lipid peroxidation. Changes in the chemical composition and ultrastructural organization of the membranes].
    Kagan VE; Arkhipenko IuV; Kozlov IuP
    Biokhimiia; 1983 Jan; 48(1):158-66. PubMed ID: 6219718
    [No Abstract]   [Full Text] [Related]  

  • 49. [Modification of an enzymic system of Ca2+ transport in sarcoplasmic reticulum membranes during lipid peroxidation. Molecular mechanisms responsible for increased membrane permeability for Ca2+].
    Kagan VE; Arkhipenko IuV; Ritov VB; Kozlov IuP
    Biokhimiia; 1983; 48(2):320-30. PubMed ID: 6301563
    [No Abstract]   [Full Text] [Related]  

  • 50. The rate of Ca2+ translocation by sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase measured with intravesicular arsenazo III.
    Beeler T; Keffer J
    Biochim Biophys Acta; 1984 Jun; 773(1):99-105. PubMed ID: 6145443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characteristics of the sarcoplasmic reticulum Ca2+-dependent ATPase from masticatory muscles.
    Sánchez GA; Takara D; Toma AF; Alonso GL
    J Dent Res; 2004 Jul; 83(7):557-61. PubMed ID: 15218046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic interconversions of phosphorylated and non-phosphorylated intermediates of the Ca-ATPase from sarcoplasmic reticulum followed in a fluorescein-labeled enzyme.
    Pick U
    FEBS Lett; 1981 Jan; 123(1):131-6. PubMed ID: 6451452
    [No Abstract]   [Full Text] [Related]  

  • 53. An estimate of the kinetics of calcium binding and dissociation of the sarcoplasmic reticulum transport ATPase.
    Rauch B; von Chak D; Hasselbach W
    FEBS Lett; 1978 Sep; 93(1):65-8. PubMed ID: 151635
    [No Abstract]   [Full Text] [Related]  

  • 54. Ca2+ occlusion in monomeric sarcoplasmic reticulum Ca-ATPase.
    Vilsen B; Andersen JP
    Prog Clin Biol Res; 1988; 273():147-54. PubMed ID: 2971223
    [No Abstract]   [Full Text] [Related]  

  • 55. Plausible stoichiometry of the interacting nucleotide-binding sites in the Ca(2+)-ATPase from sarcoplasmic reticulum membranes.
    Merino JM; Gutiérrez-Merino C; Henao F
    Arch Biochem Biophys; 1999 Aug; 368(2):298-302. PubMed ID: 10441381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy-dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary glands.
    West DW
    Biochim Biophys Acta; 1981 Apr; 673(4):374-86. PubMed ID: 7225423
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Mechanism of the effect of EGTA on the affinity to calcium of Ca-transporting and Ca-binding cell systems].
    Orlov SN; Sitozhevskiĭ AV; Pokudin NI; Agnaev VM
    Biokhimiia; 1985 Nov; 50(11):1920-5. PubMed ID: 2933081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Localization of plasma membrane and secretory calcium pumps in the mammary gland.
    Faddy HM; Smart CE; Xu R; Lee GY; Kenny PA; Feng M; Rao R; Brown MA; Bissell MJ; Roberts-Thomson SJ; Monteith GR
    Biochem Biophys Res Commun; 2008 May; 369(3):977-81. PubMed ID: 18334228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Low temperature effects on sarcoplasmic reticulum membrane permeability for Ca2+].
    Zhegunov GF; Belous AM
    Ukr Biokhim Zh (1978); 1978; 50(5):600-3. PubMed ID: 153027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in spatial arrangement between individual Ca-ATPase polypeptide chains in response to phospholamban phosphorylation.
    Chen L; Yao Q; Brungardt K; Squier T; Bigelow D
    Ann N Y Acad Sci; 1998 Sep; 853():264-6. PubMed ID: 10603955
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.