These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18323985)

  • 1. Absorption distribution of an optical beam focused into a turbid medium.
    Wang LV; Liang G
    Appl Opt; 1999 Aug; 38(22):4951-8. PubMed ID: 18323985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium.
    Wang L; Jacques SL
    Appl Opt; 1995 May; 34(13):2362-6. PubMed ID: 21037790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple passages of light through an absorption inhomogeneity in optical imaging of turbid media.
    Xu M; Cai W; Alfano RR
    Opt Lett; 2004 Aug; 29(15):1757-9. PubMed ID: 15354296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of a pulsed thin light beam through thick turbid media: experimental results.
    Zaccanti G; Bruscaglioni P; Ismaelli A; Carraresi L; Gurioli M; Wei Q
    Appl Opt; 1992 Apr; 31(12):2141-7. PubMed ID: 20720869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry.
    Shendeleva ML; Molloy JA
    Appl Opt; 2006 Sep; 45(27):7018-25. PubMed ID: 16946780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues.
    Hayakawa CK; Potma EO; Venugopalan V
    Biomed Opt Express; 2011 Jan; 2(2):278-90. PubMed ID: 21339874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-I-109: Sensitivity Analysis of an Electronic Portal Imaging Device Monte Carlo Model to Variations in Optical Transport Parameters.
    Blake S; Vial P; Holloway L; McNamara A; Greer P; Kuncic Z
    Med Phys; 2012 Jun; 39(6Part5):3650. PubMed ID: 28517636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
    Hokr BH; Bixler JN; Elpers G; Zollars B; Thomas RJ; Yakovlev VV; Scully MO
    Opt Express; 2015 Apr; 23(7):8699-705. PubMed ID: 25968708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation.
    Gan X; Gu M
    Appl Opt; 2000 Apr; 39(10):1575-9. PubMed ID: 18345054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.
    Wang L; Zhao X
    Appl Opt; 1997 Oct; 36(28):7277-82. PubMed ID: 18264237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the rough-interface effect on a converging light beam propagating in a skin tissue phantom.
    Lu JQ; Hu XH; Dong K
    Appl Opt; 2000 Nov; 39(31):5890-7. PubMed ID: 18354593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal epidetection in third-harmonic generation microscopy of turbid media.
    Débarre D; Olivier N; Beaurepaire E
    Opt Express; 2007 Jul; 15(14):8913-24. PubMed ID: 19547229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the scattering delay on time-dependent photon migration in turbid media.
    Yaroslavsky IV; Yaroslavsky AN; Tuchin VV; Schwarzmaier HJ
    Appl Opt; 1997 Sep; 36(25):6529-38. PubMed ID: 18259514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element method for diffusive light propagations in index-mismatched media.
    Lee JH; Kim S; Kim Y
    Opt Express; 2004 Apr; 12(8):1727-40. PubMed ID: 19474999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved subtraction method for measuring optical properties of turbid media.
    Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K
    Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method.
    Quan L; Ramanujam N
    Opt Lett; 2002 Jan; 27(2):104-6. PubMed ID: 18007726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonically sculpted virtual relay lens for in situ microimaging.
    Scopelliti MG; Chamanzar M
    Light Sci Appl; 2019; 8():65. PubMed ID: 31645914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of light transport in tissue: unscattered absorption events.
    Gardner CM; Welch AJ
    Appl Opt; 1994 May; 33(13):2743-5. PubMed ID: 20885632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.