These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 18324033)
1. Straightness measurements by use of a reflection confocal optical system. Matsuda K; Roy M; O'Byrne JW; Fekete PW; Eiju T; Sheppard CJ Appl Opt; 1999 Sep; 38(25):5310-8. PubMed ID: 18324033 [TBL] [Abstract][Full Text] [Related]
2. Straightness measurements with a reflection confocal optical system-an experimental study. Matsuda K; Roy M; Eiju T; O'Byrne JW; Sheppard CJ Appl Opt; 2002 Jul; 41(19):3966-70. PubMed ID: 12099607 [TBL] [Abstract][Full Text] [Related]
3. Two-dimensional straightness measurement based on optical knife-edge sensing. Wang C; Zhong F; Ellis JD Rev Sci Instrum; 2017 Sep; 88(9):095109. PubMed ID: 28964181 [TBL] [Abstract][Full Text] [Related]
4. Splicing Measurement and Compensation of Straightness Errors for Ultra-Precision Guideways. Zhou L; Zheng N; Li J; Yuan Z; Wang J; Fang F; Xu Q Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763833 [TBL] [Abstract][Full Text] [Related]
5. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology. Chen B; Cheng L; Yan L; Zhang E; Lou Y Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378 [TBL] [Abstract][Full Text] [Related]
6. An Approach to Measure Tilt Motion, Straightness and Position of Precision Linear Stage with a 3D Sinusoidal-Groove Linear Reflective Grating and Triangular Wave-Based Subdivision Method. Tsai HA; Lo YL Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238542 [TBL] [Abstract][Full Text] [Related]
7. On straightness measurements of large CNC machine tools. ElMelegy A; Zahwi S; Sobhy A Sci Rep; 2024 Jun; 14(1):13974. PubMed ID: 38886360 [TBL] [Abstract][Full Text] [Related]
8. A laser interferometer for measuring straightness and its position based on heterodyne interferometry. Chen B; Zhang E; Yan L; Li C; Tang W; Feng Q Rev Sci Instrum; 2009 Nov; 80(11):115113. PubMed ID: 19947763 [TBL] [Abstract][Full Text] [Related]
9. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology. Lou Y; Yan L; Chen B; Zhang S Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023 [TBL] [Abstract][Full Text] [Related]
10. A four parallel laser-based simultaneous measurement method for 6-degrees-of-freedom errors of rigid body with translational motion. Fu G; Zheng Y; Zhu S; Lu C; Deng X; Xie L; Yang J Rev Sci Instrum; 2022 Aug; 93(8):085101. PubMed ID: 36050090 [TBL] [Abstract][Full Text] [Related]
11. Low-Cost 2D Index and Straightness Measurement System Based on a CMOS Image Sensor. Küng A; Bircher BA; Meli F Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835777 [TBL] [Abstract][Full Text] [Related]
12. Research on Straightness Error Compensation of Grating Ruling Machine. Huang YS; Dong CC; Huang YB; Sheng B; Zhou HY; Sun L; Yang HM; Zhang DW Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):946-51. PubMed ID: 30160445 [TBL] [Abstract][Full Text] [Related]
13. In-Situ Measurement and Slow-Tool-Servo Compensation Method of Roundness Error of a Precision Mandrel. Qiao Z; Wu Y; Chen W; Jia Y; Wang B Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431522 [TBL] [Abstract][Full Text] [Related]
14. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage. Liu CH; Chen JH; Teng YF Rev Sci Instrum; 2009 Nov; 80(11):115105. PubMed ID: 19947755 [TBL] [Abstract][Full Text] [Related]
15. Development of a laser-scattering-based probe for on-line measurement of surface roughness. Wang S; Tian Y; Tay CJ; Quan C Appl Opt; 2003 Mar; 42(7):1318-24. PubMed ID: 12638888 [TBL] [Abstract][Full Text] [Related]
16. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters. Chen B; Xu B; Yan L; Zhang E; Liu Y Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740 [TBL] [Abstract][Full Text] [Related]
17. Improving optical bench radius measurements using stage error motion data. Schmitz TL; Gardner N; Vaughn M; Medicus K; Davies A Appl Opt; 2008 Dec; 47(36):6692-700. PubMed ID: 19104521 [TBL] [Abstract][Full Text] [Related]
18. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement. Lee JY; Hsieh HL; Lerondel G; Deturche R; Lu MP; Chen JC Appl Opt; 2011 Mar; 50(9):1272-9. PubMed ID: 21460999 [TBL] [Abstract][Full Text] [Related]
19. Accuracy and repeatability of an optical motion analysis system for measuring small deformations of biological tissues. Liu H; Holt C; Evans S J Biomech; 2007; 40(1):210-4. PubMed ID: 16376351 [TBL] [Abstract][Full Text] [Related]
20. Optimization of the straightness measurements on rough surfaces by Monte Carlo simulation. Hennebelle F; Coorevits T; Bigerelle M Scanning; 2014; 36(1):161-9. PubMed ID: 23878092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]