These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18324175)

  • 1. Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials.
    Swayambunathan V; Singh G; Sausa RC
    Appl Opt; 1999 Oct; 38(30):6447-54. PubMed ID: 18324175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-based detection of TNT and RDX residues in real time under ambient conditions.
    Roberson SD; Sausa RC
    Appl Spectrosc; 2010 Jul; 64(7):760-6. PubMed ID: 20615289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral Differentiation of Trace Concentrations of NO(2) from NO by Laser Photofragmentation with Fragment Ionization at 226 and 452 nm: Quantitative Analysis of NO-NO(2) Mixtures.
    Pastel RL; Sausa RC
    Appl Opt; 2000 May; 39(15):2487-95. PubMed ID: 18345164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2,4,6-Trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence.
    Wu D; Singh JP; Yueh FY; Monts DL
    Appl Opt; 1996 Jul; 35(21):3998-4003. PubMed ID: 21102802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2, 4, 6-trinitrotoluene in soil and groundwater.
    Boudreaux GM; Miller TS; Kunefke AJ; Singh JP; Yueh FY; Monts DL
    Appl Opt; 1999 Mar; 38(9):1411-7. PubMed ID: 18305761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trace detection of explosives with low vapor emissions by laser surface photofragmentation-fragment detection spectroscopy with an improved ionization probe.
    Cabalo J; Sausa R
    Appl Opt; 2005 Feb; 44(6):1084-91. PubMed ID: 15751700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photofragmentation of nitro-based explosives with chemiluminescence detection.
    Monterola MP; Smith BW; Omenetto N; Winefordner JD
    Anal Bioanal Chem; 2008 Aug; 391(7):2617-26. PubMed ID: 18551285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge.
    Na N; Zhang C; Zhao M; Zhang S; Yang C; Fang X; Zhang X
    J Mass Spectrom; 2007 Aug; 42(8):1079-85. PubMed ID: 17618527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation.
    Wynn CM; Palmacci S; Kunz RR; Clow K; Rothschild M
    Appl Opt; 2008 Nov; 47(31):5767-76. PubMed ID: 19122718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of NO and NO(2) by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm.
    Pastel RL; Sausa RC
    Appl Opt; 1996 Jul; 35(21):4046-52. PubMed ID: 21102809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.
    Hikal WM; Weeks BL
    Talanta; 2014 Jul; 125():24-8. PubMed ID: 24840410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry.
    Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X
    Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate dynamics of environmentally exposed explosive traces.
    Kunz RR; Gregory KE; Aernecke MJ; Clark ML; Ostrinskaya A; Fountain AW
    J Phys Chem A; 2012 Apr; 116(14):3611-24. PubMed ID: 22424334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of hydrogen peroxide using photofragmentation laser-induced fluorescence.
    Johansson O; Bood J; Aldén M; Lindblad U
    Appl Spectrosc; 2008 Jan; 62(1):66-72. PubMed ID: 18230210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization.
    Cotte-Rodríguez I; Takáts Z; Talaty N; Chen H; Cooks RG
    Anal Chem; 2005 Nov; 77(21):6755-64. PubMed ID: 16255571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of high explosives using single-particle aerosol mass spectrometry.
    Martin AN; Farquar GR; Gard EE; Frank M; Fergenson DP
    Anal Chem; 2007 Mar; 79(5):1918-25. PubMed ID: 17249636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of explosives via photolytic cleavage of nitroesters and nitramines.
    Andrew TL; Swager TM
    J Org Chem; 2011 May; 76(9):2976-93. PubMed ID: 21452828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases.
    Rodgers MO; Asai K; Davis DD
    Appl Opt; 1980 Nov; 19(21):3597-605. PubMed ID: 20234663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by laser surface photofragmentation-fragment detection spectroscopy.
    Cabalo J; Sausa R
    Appl Spectrosc; 2003 Sep; 57(9):1196-9. PubMed ID: 14611053
    [No Abstract]   [Full Text] [Related]  

  • 20. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.