These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18324297)

  • 1. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.
    Hoge FE; Wright CW; Lyon PE; Swift RN; Yungel JK
    Appl Opt; 1999 Dec; 38(36):7431-41. PubMed ID: 18324297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm.
    Hoge FE; Wright CW; Lyon PE; Swift RN; Yungel JK
    Appl Opt; 1999 Jan; 38(3):495-504. PubMed ID: 18305638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model.
    Hoge FE; Lyon PE
    Appl Opt; 1999 Mar; 38(9):1657-62. PubMed ID: 18305786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements.
    Hoge FE; Vodacek A; Swift RN; Yungel JK; Blough NV
    Appl Opt; 1995 Oct; 34(30):7032-8. PubMed ID: 21060564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties.
    Lyon PE; Hoge FE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2004 Nov; 43(31):5886-92. PubMed ID: 15540447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory.
    Hoge FE
    Appl Opt; 2003 Dec; 42(36):7197-201. PubMed ID: 14717299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter.
    Hoge FE; Lyon PE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2005 May; 44(14):2857-62. PubMed ID: 15943339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results.
    Hoge FE; Lyon PE; Swift RN; Yungel JK; Abbott MR; Letelier RM; Esaias WE
    Appl Opt; 2003 May; 42(15):2767-71. PubMed ID: 12777014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Quantitative retrieval of phytoplankton pigment based on water inherent optical properties in Lake Taihu].
    Zhang YL; Qin BQ
    Huan Jing Ke Xue; 2006 Dec; 27(12):2439-44. PubMed ID: 17304837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean.
    Aurin D; Mannino A; Lary DJ
    Appl Sci (Basel); 2018; 8(12):2687. PubMed ID: 31032080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating PACE Global Ocean Radiances.
    Gregg WW; Rousseaux CS
    Front Mar Sci; 2017; 4():60. PubMed ID: 29292403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions.
    Hoge FE; Wright CW; Kana TM; Swift RN; Yungel JK
    Appl Opt; 1998 Jul; 37(21):4744-9. PubMed ID: 18285931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring inherent optical properties and water constituent profiles from apparent optical properties.
    Fan Y; Li W; Calzado VS; Trees C; Stamnes S; Fournier G; McKee D; Stamnes K
    Opt Express; 2015 Jul; 23(15):A987-1009. PubMed ID: 26367699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.
    Lin J; Cao W; Wang G; Hu S
    Appl Opt; 2013 Jun; 52(18):4249-57. PubMed ID: 23842167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms.
    Aguilar-Maldonado JA; Santamaría-Del-Ángel E; Gonzalez-Silvera A; Sebastiá-Frasquet MT
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beam attenuation coefficient retrieval by inversion of airborne lidar-induced chromophoric dissolved organic matter fluorescence. I. Theory.
    Hoge FE
    Appl Opt; 2006 Apr; 45(10):2344-51. PubMed ID: 16608003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific absorption and backscattering coefficients of the main water constituents in Poyang Lake, China.
    Wu G; Cui L; Duan H; Fei T; Liu Y
    Environ Monit Assess; 2013 May; 185(5):4191-206. PubMed ID: 22976118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China.
    Wu G; Cui L; Duan H; Fei T; Liu Y
    Appl Opt; 2011 Dec; 50(34):6358-68. PubMed ID: 22192987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong.
    Liu H; Jing H; Wong TH; Chen B
    Environ Microbiol Rep; 2014 Feb; 6(1):90-9. PubMed ID: 24596266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.