These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18324352)

  • 1. Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2008; 26(1-2):143-50. PubMed ID: 18324352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lane formation in oppositely charged colloids driven by an electric field: chaining and two-dimensional crystallization.
    Rex M; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051402. PubMed ID: 17677060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields.
    Wysocki A; Löwen H
    J Phys Condens Matter; 2011 Jul; 23(28):284117. PubMed ID: 21709336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions.
    Lorenzo T; Marco L
    J Colloid Interface Sci; 2022 Oct; 624():637-649. PubMed ID: 35696787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles.
    Klymko K; Geissler PL; Whitelam S
    Phys Rev E; 2016 Aug; 94(2-1):022608. PubMed ID: 27627361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):139-46. PubMed ID: 18791754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Inverse Squeezing Flow on the Self-Assembly of Oppositely Charged Colloidal Particles under Electric Field.
    Yuan J; Takae K; Tanaka H
    Phys Rev Lett; 2022 Dec; 129(24):248001. PubMed ID: 36563242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lane and band formation of oppositely driven colloidal particles in two-dimensional ring geometries.
    Vater T; Isele M; Siems U; Nielaba P
    Phys Rev E; 2022 Aug; 106(2-1):024606. PubMed ID: 36109916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model.
    Wani YM; Kovakas PG; Nikoubashman A; Howard MP
    J Chem Phys; 2022 Jan; 156(2):024901. PubMed ID: 35032985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Should "lane formation" occur systematically in driven liquids and colloids?
    Delhommelle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016705. PubMed ID: 15697762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of the laning transition in two dimensions.
    Glanz T; Löwen H
    J Phys Condens Matter; 2012 Nov; 24(46):464114. PubMed ID: 23114095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reentrance effect in the lane formation of driven colloids.
    Chakrabarti J; Dzubiella J; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):012401. PubMed ID: 15324099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic force driven colloidal self-assembly near a solid surface.
    Rahman MM; Williams SJ
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1402-1410. PubMed ID: 34587527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Brownian dynamics study on the self-diffusion of charged tracers in dilute polyelectrolyte solutions.
    Zhou T; Chen SB
    J Chem Phys; 2005 Mar; 122(12):124905. PubMed ID: 15836422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Transitions of Oppositely Charged Colloidal Particles Driven by Alternating Current Electric Field.
    Li B; Wang YL; Shi G; Gao Y; Shi X; Woodward CE; Forsman J
    ACS Nano; 2021 Feb; 15(2):2363-2373. PubMed ID: 33576616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lane formation in colloidal mixtures driven by an external field.
    Dzubiella J; Hoffmann GP; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021402. PubMed ID: 11863518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driven binary colloidal mixture in a 2D narrow channel with hard walls.
    Foulaadvand ME; Aghaee B
    Eur Phys J E Soft Matter; 2016 Mar; 39(3):37. PubMed ID: 27021654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal Long Ranged Correlations in Driven Binary Mixtures.
    Poncet A; Bénichou O; Démery V; Oshanin G
    Phys Rev Lett; 2017 Mar; 118(11):118002. PubMed ID: 28368633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.