These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18324719)

  • 1. Predicting NMR relaxation rates in anisotropically tumbling proteins through networks of coupled rotators.
    Nodet G; Abergel D; Bodenhausen G
    Chemphyschem; 2008 Mar; 9(4):625-33. PubMed ID: 18324719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein dynamics from a NMR perspective: networks of coupled rotators and fractional Brownian dynamics.
    Calandrini V; Abergel D; Kneller GR
    J Chem Phys; 2008 Apr; 128(14):145102. PubMed ID: 18412480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting conformational entropy of bond vectors in proteins by networks of coupled rotators.
    Dhulesia A; Bodenhausen G; Abergel D
    J Chem Phys; 2008 Sep; 129(9):095107. PubMed ID: 19044895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of cross correlation between dipolar coupling and chemical shift anisotropy in the spin relaxation of 13C, 15N-labeled proteins.
    Ghose R; Huang K; Prestegard JH
    J Magn Reson; 1998 Dec; 135(2):487-99. PubMed ID: 9878476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from (15)N relaxation data using computer program ROTDIF.
    Walker O; Varadan R; Fushman D
    J Magn Reson; 2004 Jun; 168(2):336-45. PubMed ID: 15140445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: second-order maximum correlation approximation.
    La Penna G; Fausti S; Perico A; Ferretti JA
    Biopolymers; 2000 Aug; 54(2):89-103. PubMed ID: 10861370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions.
    Mayo KH; Daragan VA; Idiyatullin D; Nesmelova I
    J Magn Reson; 2000 Sep; 146(1):188-95. PubMed ID: 10968972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations.
    Blake-Hall J; Walker O; Fushman D
    Methods Mol Biol; 2004; 278():139-60. PubMed ID: 15317996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein backbone (15)N relaxation rates as a tool for the diagnosis of structure quality.
    de Alba E; Tjandra N
    J Magn Reson; 2000 Jun; 144(2):367-71. PubMed ID: 10828204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative determination of NOE rates in perdeuterated and protonated proteins: practical and theoretical aspects.
    Vögeli B; Friedmann M; Leitz D; Sobol A; Riek R
    J Magn Reson; 2010 Jun; 204(2):290-302. PubMed ID: 20381391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional protein dynamics seen by nuclear magnetic resonance spectroscopy: Relating molecular dynamics simulation and experiment.
    Calandrini V; Abergel D; Kneller GR
    J Chem Phys; 2010 Oct; 133(14):145101. PubMed ID: 20950048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of protein reorientational diffusion in solution by 13C off-resonance rotating frame spin-lattice relaxation: effect of anisotropic tumbling.
    Morgan CF; Schleich T; Caines GH; Michael D
    Biopolymers; 1990 Feb; 29(3):469-80. PubMed ID: 2331510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of dynamic parameters from NMR relaxation data using the Lipari-Szabo model-free approach and Bayesian statistical methods.
    Andrec M; Montelione GT; Levy RM
    J Magn Reson; 1999 Aug; 139(2):408-21. PubMed ID: 10423379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of anisotropy and exchange broadening using (15)N CSA-(15)N-(1)H dipole-dipole relaxation cross-correlation experiments.
    Renner C; Holak TA
    J Magn Reson; 2000 Aug; 145(2):192-200. PubMed ID: 10910687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian statistical method for the detection and quantification of rotational diffusion anisotropy from NMR relaxation data.
    Andrec M; Inman KG; Weber DJ; Levy RM; Montelione GT
    J Magn Reson; 2000 Sep; 146(1):66-80. PubMed ID: 10968959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of nitrogen-15 proton-driven spin diffusion on the measurement of nitrogen-15 longitudinal relaxation times.
    Giraud N; Blackledge M; Böckmann A; Emsley L
    J Magn Reson; 2007 Jan; 184(1):51-61. PubMed ID: 17030133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein dynamics by ¹⁵N nuclear magnetic relaxation.
    Ferrage F
    Methods Mol Biol; 2012; 831():141-63. PubMed ID: 22167673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting internal protein dynamics from structures using coupled networks of hindered rotators.
    Abergel D; Bodenhausen G
    J Chem Phys; 2005 Nov; 123(20):204901. PubMed ID: 16351311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal bulge and tetraloop of the catalytic domain 5 of a group II intron ribozyme are flexible: implications for catalysis.
    Eldho NV; Dayie KT
    J Mol Biol; 2007 Jan; 365(4):930-44. PubMed ID: 17098254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.