These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18324776)

  • 1. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.
    Sahoo S; Chung C; Khetan S; Burdick JA
    Biomacromolecules; 2008 Apr; 9(4):1088-92. PubMed ID: 18324776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel.
    Galarraga JH; Dhand AP; Enzmann BP; Burdick JA
    Biomacromolecules; 2023 Jan; 24(1):413-425. PubMed ID: 36516973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatically crosslinked silk-hyaluronic acid hydrogels.
    Raia NR; Partlow BP; McGill M; Kimmerling EP; Ghezzi CE; Kaplan DL
    Biomaterials; 2017 Jul; 131():58-67. PubMed ID: 28376366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering.
    Guo JL; Kim YS; Xie VY; Smith BT; Watson E; Lam J; Pearce HA; Engel PS; Mikos AG
    Sci Adv; 2019 Jun; 5(6):eaaw7396. PubMed ID: 31183408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of matrix degradation and functionality on cell survival and morphogenesis in PEG-based hydrogels.
    Raza A; Lin CC
    Macromol Biosci; 2013 Aug; 13(8):1048-58. PubMed ID: 23776086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels.
    Lunzer M; Shi L; Andriotis OG; Gruber P; Markovic M; Thurner PJ; Ossipov D; Liska R; Ovsianikov A
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15122-15127. PubMed ID: 30191643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro.
    Young JL; Engler AJ
    Biomaterials; 2011 Feb; 32(4):1002-9. PubMed ID: 21071078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quality by design approach to optimise disulfide-linked hyaluronic acid hydrogels.
    Ranamalla SR; Tavakoli S; Porfire AS; Tefas LR; Banciu M; Tomuța I; Varghese OP
    Carbohydr Polym; 2024 Sep; 339():122251. PubMed ID: 38823918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Forming Norbornene-Tetrazine Hydrogels with Independently Tunable Properties.
    Gultian KA; Gandhi R; Kim TWB; Vega SL
    Macromol Biosci; 2023 Mar; 23(3):e2200425. PubMed ID: 36493315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing degradable hydrogels for orthogonal control of cell microenvironments.
    Kharkar PM; Kiick KL; Kloxin AM
    Chem Soc Rev; 2013 Sep; 42(17):7335-72. PubMed ID: 23609001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of enzymatically degradable PEG-based peptide-containing hydrogels.
    Yang J; Jacobsen MT; Pan H; Kopecek J
    Macromol Biosci; 2010 Apr; 10(4):445-54. PubMed ID: 20146210
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Zerbinati N; Mocchi R; Galadari H; Maccario C; Maggi M; Rauso R; Passi A; Esposito C; Sommatis S
    Biomed Res Int; 2019; 2019():3196723. PubMed ID: 31309104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neighboring cells override 3D hydrogel matrix cues to drive human MSC quiescence.
    Ferreira SA; Faull PA; Seymour AJ; Yu TTL; Loaiza S; Auner HW; Snijders AP; Gentleman E
    Biomaterials; 2018 Sep; 176():13-23. PubMed ID: 29852376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabricating Degradable Thermoresponsive Hydrogels on Multiple Length Scales via Reactive Extrusion, Microfluidics, Self-assembly, and Electrospinning.
    Sivakumaran D; Bakaic E; Campbell SB; Xu F; Mueller E; Hoare T
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications.
    Borzacchiello A; Russo L; Malle BM; Schwach-Abdellaoui K; Ambrosio L
    Biomed Res Int; 2015; 2015():871218. PubMed ID: 26090451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved method for synthesis of cysteine modified hyaluronic acid for in situ hydrogel formation.
    Zhang X; Sun P; Huangshan L; Hu BH; Messersmith PB
    Chem Commun (Camb); 2015 Jun; 51(47):9662-5. PubMed ID: 25977950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolytic hydrogels tune mesenchymal stem cell persistence and immunomodulation for enhanced diabetic cutaneous wound healing.
    Martin KE; Hunckler MD; Chee E; Caplin JD; Barber GF; Kalelkar PP; Schneider RS; García AJ
    Biomaterials; 2023 Oct; 301():122256. PubMed ID: 37517209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stop-flow lithography for the production of shape-evolving degradable microgel particles.
    Hwang DK; Oakey J; Toner M; Arthur JA; Anseth KS; Lee S; Zeiger A; Van Vliet KJ; Doyle PS
    J Am Chem Soc; 2009 Apr; 131(12):4499-504. PubMed ID: 19215127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications.
    Gholamali I; Vu TT; Jo SH; Park SH; Lim KT
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelation characteristics, physico-mechanical properties and degradation kinetics of micellar hydrogels.
    Moeinzadeh S; Jabbari E
    Eur Polym J; 2015 Nov; 72():566-576. PubMed ID: 26688592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.