BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3895 related articles for article (PubMed ID: 18324794)

  • 1. Modified silver nanoparticle as a hydrophobic affinity probe for analysis of peptides and proteins in biological samples by using liquid-liquid microextraction coupled to AP-MALDI-ion trap and MALDI-TOF mass spectrometry.
    Shrivas K; Wu HF
    Anal Chem; 2008 Apr; 80(7):2583-9. PubMed ID: 18324794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single drop microextraction using silver nanoparticles as electrostatic probes for peptide analysis in atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry and comparison with gold electrostatic probes and silver hydrophobic probes.
    Sudhir PR; Shrivas K; Zhou ZC; Wu HF
    Rapid Commun Mass Spectrom; 2008 Oct; 22(19):3076-86. PubMed ID: 18777509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization and application of modified Pd nanoparticles as preconcentration probes for selective enrichment/analysis of proteins via hydrophobic interactions from real-world samples using nanoparticle-liquid-liquid microextraction coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Bhat AR; Wu HF
    Rapid Commun Mass Spectrom; 2010 Dec; 24(24):3547-52. PubMed ID: 21080507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modified silver selinide nanoparticles as extracting probes to improve peptide/protein detection via nanoparticles-based liquid phase microextraction coupled with MALDI mass spectrometry.
    Kailasa SK; Wu HF
    Talanta; 2010 Dec; 83(2):527-34. PubMed ID: 21111169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine.
    Shrivas K; Wu HF
    Rapid Commun Mass Spectrom; 2008 Sep; 22(18):2863-72. PubMed ID: 18720468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-single drop microextraction as multifunctional and sensitive nanoprobes: Binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS.
    Shastri L; Kailasa SK; Wu HF
    Talanta; 2010 Jun; 81(4-5):1176-82. PubMed ID: 20441881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bare silica nanoparticles as concentrating and affinity probes for rapid analysis of aminothiols, lysozyme and peptide mixtures using atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Agrawal K; Wu HF
    Rapid Commun Mass Spectrom; 2008; 22(3):283-90. PubMed ID: 18186457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse micellar microextraction for rapid analysis of thiol-containing peptides and amino acids by atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Agrawal K; Wu HF; Shrivas K
    Rapid Commun Mass Spectrom; 2008 May; 22(9):1437-44. PubMed ID: 18395891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with AP-MALDI mass spectrometry.
    Sudhir PR; Wu HF; Zhou ZC
    Anal Chem; 2005 Nov; 77(22):7380-5. PubMed ID: 16285689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional nanoparticles composite for MALDI-MS: Cd2+-doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDI-MS analysis.
    Shrivas K; Wu HF
    J Mass Spectrom; 2010 Dec; 45(12):1452-60. PubMed ID: 21053343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single drop microextraction as a concentrating probe for rapid screening of low molecular weight drugs from human urine in atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry.
    Shrivas K; Wu HF
    Rapid Commun Mass Spectrom; 2007; 21(18):3103-8. PubMed ID: 17708597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single drop microextraction coupled with matrix-assisted laser desorption/ionization mass spectrometry for rapid and direct analysis of hydrophobic peptides from biological samples in high salt solution.
    Wu HF; Kailasa SK; Lin CH
    Rapid Commun Mass Spectrom; 2011 Jan; 25(2):307-15. PubMed ID: 21192026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled-monolayer-modified silicon substrate to enhance the sensitivity of peptide detection for AP-MALDI mass spectrometry.
    Hsieh S; Ku HY; Ke YT; Wu HF
    J Mass Spectrom; 2007 Dec; 42(12):1628-36. PubMed ID: 17694592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of platinum nanoparticles as affinity probe and matrix for direct analysis of small biomolecules and microwave digested proteins using matrix-assisted laser desorption/ionization mass spectrometry.
    Shrivas K; Agrawal K; Wu HF
    Analyst; 2011 Jul; 136(13):2852-7. PubMed ID: 21617798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of CID spectra of singly charged polypeptide antibiotic precursor ions obtained by positive-ion vacuum MALDI IT/RTOF and TOF/RTOF, AP-MALDI-IT and ESI-IT mass spectrometry.
    Pittenauer E; Zehl M; Belgacem O; Raptakis E; Mistrik R; Allmaier G
    J Mass Spectrom; 2006 Apr; 41(4):421-47. PubMed ID: 16604520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Kailasa SK; Kiran K; Wu HF
    Anal Chem; 2008 Dec; 80(24):9681-8. PubMed ID: 18991387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct combination of immersed single-drop microextraction with atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry for rapid analysis of a hydrophilic drug via hydrogen-bonding interaction and comparison with liquid-liquid extraction and liquid-phase microextraction using a dual gauge microsyringe with a hollow fiber.
    Wu HF; Lin CH
    Rapid Commun Mass Spectrom; 2006; 20(16):2511-5. PubMed ID: 16862620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-phase microextraction for rapid AP-MALDI and quantitation of nortriptyline in biological matrices.
    Wu HF; Ku HY; Yen JH
    J Sep Sci; 2008 Jul; 31(12):2288-94. PubMed ID: 18615829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to make big molecules fly out of liquid water: applications, features and physics of laser assisted liquid phase dispersion mass spectrometry.
    Charvat A; Abel B
    Phys Chem Chem Phys; 2007 Jul; 9(26):3335-60. PubMed ID: 17664960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and highly sensitive protein extraction via cobalt oxide nanoparticle-based liquid-liquid microextraction coupled with MALDI mass spectrometry.
    Shrivas K; Wu HF
    Analyst; 2012 Feb; 137(4):890-5. PubMed ID: 22163366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 195.