BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18324815)

  • 1. A structure-permeability relationship of ultrathin nanoporous silicon membrane: a comparison with the nuclear envelope.
    Kim E; Xiong H; Striemer CC; Fang DZ; Fauchet PM; McGrath JL; Amemiya S
    J Am Chem Soc; 2008 Apr; 130(13):4230-1. PubMed ID: 18324815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane.
    Burham N; Hamzah AA; Majlis BY
    Biomed Mater Eng; 2014; 24(6):2203-9. PubMed ID: 25226919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-selective permeability of an ultrathin nanoporous silicon membrane as probed by scanning electrochemical microscopy using micropipet-supported ITIES tips.
    Ishimatsu R; Kim J; Jing P; Striemer CC; Fang DZ; Fauchet PM; McGrath JL; Amemiya S
    Anal Chem; 2010 Sep; 82(17):7127-34. PubMed ID: 20690617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical impedance spectroscopy studies of organic-solvent-induced permeability changes in nanoporous films derived from a cylinder-forming diblock copolymer.
    Perera DM; Pandey B; Ito T
    Langmuir; 2011 Sep; 27(17):11111-7. PubMed ID: 21774542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    J Phys Condens Matter; 2010 Nov; 22(45):454134. PubMed ID: 21339620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous dual-electrodes with millimetre extensions: parallelized fabrication and area effects on redox cycling.
    Hüske M; Offenhäusser A; Wolfrum B
    Phys Chem Chem Phys; 2014 Jun; 16(23):11609-16. PubMed ID: 24806814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of nanopores in a silicon membrane: self-limiting formation of sub-10 nm circular openings.
    Zhang M; Schmidt T; Sangghaleh F; Roxhed N; Sychugov I; Linnros J
    Nanotechnology; 2014 Sep; 25(35):355302. PubMed ID: 25116147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-voltage efficient electroosmotic pumps with ultrathin silica nanoporous membrane.
    Yang Q; Su B; Wang Y; Wu W
    Electrophoresis; 2019 Aug; 40(16-17):2149-2156. PubMed ID: 30916400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy.
    Shen M; Ishimatsu R; Kim J; Amemiya S
    J Am Chem Soc; 2012 Jun; 134(24):9856-9. PubMed ID: 22655578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes.
    Gaborski TR; Snyder JL; Striemer CC; Fang DZ; Hoffman M; Fauchet PM; McGrath JL
    ACS Nano; 2010 Nov; 4(11):6973-81. PubMed ID: 21043434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically modified solid-state nanopores.
    Wanunu M; Meller A
    Nano Lett; 2007 Jun; 7(6):1580-5. PubMed ID: 17503868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability of the nuclear envelope at isolated Xenopus oocyte nuclei studied by scanning electrochemical microscopy.
    Guo J; Amemiya S
    Anal Chem; 2005 Apr; 77(7):2147-56. PubMed ID: 15801749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballistic and non-ballistic gas flow through ultrathin nanopores.
    Kavalenka MN; Striemer CC; Fang DZ; Gaborski TR; McGrath JL; Fauchet PM
    Nanotechnology; 2012 Apr; 23(14):145706. PubMed ID: 22433182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical exfoliation of track-etched two-dimensional layered materials for the fabrication of ultrathin nanopores.
    Jiang Y; Gao J; Guo W; Jiang L
    Chem Commun (Camb); 2014 Nov; 50(91):14149-52. PubMed ID: 25277769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy.
    Kim J; Izadyar A; Nioradze N; Amemiya S
    J Am Chem Soc; 2013 Feb; 135(6):2321-9. PubMed ID: 23320434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and protein adsorption of hierarchical nanoporous ultrathin fibers.
    Hong Y; Fan H; Zhang X
    J Phys Chem B; 2009 Apr; 113(17):5837-42. PubMed ID: 19344172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suspended nanoporous membranes as interfaces for neuronal biohybrid systems.
    Wolfrum B; Mourzina Y; Sommerhage F; Offenhäusser A
    Nano Lett; 2006 Mar; 6(3):453-7. PubMed ID: 16522041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca
    Pathirathna P; Balla RJ; Jantz DT; Kurapati N; Gramm ER; Leonard KC; Amemiya S
    Anal Chem; 2019 Apr; 91(8):5446-5454. PubMed ID: 30907572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a one-dimensional array of nanopores horizontally aligned on a Si substrate.
    Zhang H; Chen Z; Li T; Saito K
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1745-8. PubMed ID: 16245540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method.
    Datta S; Conlisk AT; Kanani DM; Zydney AL; Fissell WH; Roy S
    J Colloid Interface Sci; 2010 Aug; 348(1):85-95. PubMed ID: 20462592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.