These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
630 related articles for article (PubMed ID: 18324816)
21. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Centi S; Tombelli S; Minunni M; Mascini M Anal Chem; 2007 Feb; 79(4):1466-73. PubMed ID: 17297945 [TBL] [Abstract][Full Text] [Related]
22. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. Lu Y; Zhu N; Yu P; Mao L Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204 [TBL] [Abstract][Full Text] [Related]
23. A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal. Dong ZM; Zhao GC Analyst; 2013 Apr; 138(8):2456-62. PubMed ID: 23467569 [TBL] [Abstract][Full Text] [Related]
24. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Kim YS; Niazi JH; Gu MB Anal Chim Acta; 2009 Feb; 634(2):250-4. PubMed ID: 19185128 [TBL] [Abstract][Full Text] [Related]
25. Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Du Y; Chen C; Yin J; Li B; Zhou M; Dong S; Wang E Anal Chem; 2010 Feb; 82(4):1556-63. PubMed ID: 20095580 [TBL] [Abstract][Full Text] [Related]
26. A simple fluorescent biosensor for theophylline based on its RNA aptamer. Rankin CJ; Fuller EN; Hamor KH; Gabarra SA; Shields TP Nucleosides Nucleotides Nucleic Acids; 2006; 25(12):1407-24. PubMed ID: 17067962 [TBL] [Abstract][Full Text] [Related]
27. Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Jiang H; Ling K; Tao X; Zhang Q Biosens Bioelectron; 2015 Aug; 70():299-303. PubMed ID: 25840014 [TBL] [Abstract][Full Text] [Related]
28. Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates. Chávez JL; Lyon W; Kelley-Loughnane N; Stone MO Biosens Bioelectron; 2010 Sep; 26(1):23-8. PubMed ID: 20605714 [TBL] [Abstract][Full Text] [Related]
29. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Deng C; Chen J; Nie Z; Wang M; Chu X; Chen X; Xiao X; Lei C; Yao S Anal Chem; 2009 Jan; 81(2):739-45. PubMed ID: 19072036 [TBL] [Abstract][Full Text] [Related]
30. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles. Chai Y; Tian D; Cui H Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171 [TBL] [Abstract][Full Text] [Related]
31. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Ding C; Ge Y; Lin JM Biosens Bioelectron; 2010 Feb; 25(6):1290-4. PubMed ID: 19914815 [TBL] [Abstract][Full Text] [Related]
32. Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Radi AE; O'Sullivan CK Chem Commun (Camb); 2006 Aug; (32):3432-4. PubMed ID: 16896485 [TBL] [Abstract][Full Text] [Related]
33. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Chen J; Zhang J; Li J; Yang HH; Fu F; Chen G Biosens Bioelectron; 2010 Jan; 25(5):996-1000. PubMed ID: 19818593 [TBL] [Abstract][Full Text] [Related]
34. Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin. Cheng Q; Zhu S; Song J; Zhang N Analyst; 2004 Apr; 129(4):309-14. PubMed ID: 15042161 [TBL] [Abstract][Full Text] [Related]
35. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Jie G; Liu B; Pan H; Zhu JJ; Chen HY Anal Chem; 2007 Aug; 79(15):5574-81. PubMed ID: 17614363 [TBL] [Abstract][Full Text] [Related]
36. Challenges of electrochemical impedance spectroscopy in protein biosensing. Bogomolova A; Komarova E; Reber K; Gerasimov T; Yavuz O; Bhatt S; Aldissi M Anal Chem; 2009 May; 81(10):3944-9. PubMed ID: 19364089 [TBL] [Abstract][Full Text] [Related]
37. Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions. Li X; Shen L; Zhang D; Qi H; Gao Q; Ma F; Zhang C Biosens Bioelectron; 2008 Jun; 23(11):1624-30. PubMed ID: 18339536 [TBL] [Abstract][Full Text] [Related]
38. Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Lee CY; Wu KY; Su HL; Hung HY; Hsieh YZ Biosens Bioelectron; 2013 Jan; 39(1):133-8. PubMed ID: 22883750 [TBL] [Abstract][Full Text] [Related]
39. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Zhu X; Zhang Y; Yang W; Liu Q; Lin Z; Qiu B; Chen G Anal Chim Acta; 2011 Jan; 684(1-2):121-5. PubMed ID: 21167993 [TBL] [Abstract][Full Text] [Related]
40. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. He P; Shen L; Cao Y; Li D Anal Chem; 2007 Nov; 79(21):8024-9. PubMed ID: 17887727 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]