These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 18325759)
1. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor. Dave SR Bioresour Technol; 2008 Nov; 99(16):7803-6. PubMed ID: 18325759 [TBL] [Abstract][Full Text] [Related]
2. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retention in a fluidized-bed reactor. Kinnunen PH; Puhakka JA Biotechnol Bioeng; 2004 Mar; 85(7):697-705. PubMed ID: 14991647 [TBL] [Abstract][Full Text] [Related]
3. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material. Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947 [TBL] [Abstract][Full Text] [Related]
4. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Dopson M; Halinen AK; Rahunen N; Ozkaya B; Sahinkaya E; Kaksonen AH; Lindström EB; Puhakka JA Biotechnol Bioeng; 2007 Aug; 97(5):1205-15. PubMed ID: 17187443 [TBL] [Abstract][Full Text] [Related]
5. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads. Giaveno A; Lavalle L; Guibal E; Donati E J Microbiol Methods; 2008 Mar; 72(3):227-34. PubMed ID: 18294712 [TBL] [Abstract][Full Text] [Related]
6. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: Experiments and modeling. Jaisankar S; Modak JM Biotechnol Prog; 2009; 25(5):1328-42. PubMed ID: 19610075 [TBL] [Abstract][Full Text] [Related]
7. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans. Mesa MM; Macías M; Cantero D Biotechnol Prog; 2002; 18(4):679-85. PubMed ID: 12153298 [TBL] [Abstract][Full Text] [Related]
8. Bioproduction of ferric sulfate used during heavy metals removal from sewage sludge. Drogui P; Mercier G; Blais JF J Environ Qual; 2005; 34(3):816-24. PubMed ID: 15843644 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans. Kleerebezem R; van Loosdrecht MC Biotechnol Bioeng; 2008 May; 100(1):49-60. PubMed ID: 18080344 [TBL] [Abstract][Full Text] [Related]
10. Recovery of scrap iron metal value using biogenerated ferric iron. Ballor NR; Nesbitt CC; Lueking DR Biotechnol Bioeng; 2006 Apr; 93(6):1089-94. PubMed ID: 16440341 [TBL] [Abstract][Full Text] [Related]
11. Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Patel BC; Tipre DR; Dave SR Bioresour Technol; 2012 Aug; 118():483-9. PubMed ID: 22717567 [TBL] [Abstract][Full Text] [Related]
12. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors. Ebrahimi S; Faraghi N; Hosseini M J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1363-8. PubMed ID: 26264929 [TBL] [Abstract][Full Text] [Related]
13. Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Zhou HB; Zeng WM; Yang ZF; Xie YJ; Qiu GZ Bioresour Technol; 2009 Jan; 100(2):515-20. PubMed ID: 18657418 [TBL] [Abstract][Full Text] [Related]
14. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Rowe OF; Johnson DB Syst Appl Microbiol; 2008 Mar; 31(1):68-77. PubMed ID: 17983721 [TBL] [Abstract][Full Text] [Related]
15. "Isolation, identification, characterization and polymetallic concentrate leaching studies of tryptic soy- and peptone-resistant thermotolerant Acidithiobacillus ferrooxidans SRDSM2". Patel MJ; Tipre DR; Dave SR Bioresour Technol; 2011 Jan; 102(2):1602-7. PubMed ID: 20863700 [TBL] [Abstract][Full Text] [Related]
16. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K; Auvinen H; Johnson DB Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880 [TBL] [Abstract][Full Text] [Related]
17. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans. Chen Y; Suzuki I Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867 [TBL] [Abstract][Full Text] [Related]
18. Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae. Bryan CG; Johnson DB FEMS Microbiol Lett; 2008 Nov; 288(2):149-55. PubMed ID: 18803673 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one. Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA Biotechnol Bioeng; 2007 Aug; 97(5):1121-7. PubMed ID: 17187444 [TBL] [Abstract][Full Text] [Related]
20. [Effect of Fe3+ ions on Thiobacillus ferrooxidans oxidation of ferrous oxide at various temperatures]. Kovalenko TV; Karavaĭko GI; Piskunov VP Mikrobiologiia; 1982; 51(1):156-60. PubMed ID: 7070305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]