BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18325785)

  • 1. Pathogenic mutations in the glycosylphosphatidylinositol signal peptide of PrP modulate its topology in neuroblastoma cells.
    Gu Y; Singh A; Bose S; Singh N
    Mol Cell Neurosci; 2008 Apr; 37(4):647-56. PubMed ID: 18325785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of PrP GPI-anchor signal peptide is modulated by P238S pathogenic mutation.
    Guizzunti G; Zurzolo C
    Traffic; 2014 Jan; 15(1):78-93. PubMed ID: 24112521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A point mutation in GPI-attachment signal peptide accelerates the development of prion disease.
    Kobayashi A; Hirata T; Shimazaki T; Munesue Y; Aoshima K; Kimura T; Nio-Kobayashi J; Hasebe R; Takeuchi A; Matsuura Y; Kusumi S; Koga D; Iwasaki Y; Kinoshita T; Mohri S; Kitamoto T
    Acta Neuropathol; 2023 May; 145(5):637-650. PubMed ID: 36879070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylphosphatidylinositol Anchor Modification Machinery Deficiency Is Responsible for the Formation of Pro-Prion Protein (PrP) in BxPC-3 Protein and Increases Cancer Cell Motility.
    Yang L; Gao Z; Hu L; Wu G; Yang X; Zhang L; Zhu Y; Wong BS; Xin W; Sy MS; Li C
    J Biol Chem; 2016 Feb; 291(8):3905-17. PubMed ID: 26683373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation.
    Ashok A; Hegde RS
    Mol Biol Cell; 2008 Aug; 19(8):3463-76. PubMed ID: 18508914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring.
    Hizume M; Kobayashi A; Mizusawa H; Kitamoto T
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1681-6. PubMed ID: 20040362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic Reticulum.
    Stewart RS; Drisaldi B; Harris DA
    Mol Biol Cell; 2001 Apr; 12(4):881-9. PubMed ID: 11294893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of topological determinants in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during prion infection.
    Stewart RS; Harris DA
    J Biol Chem; 2003 Nov; 278(46):45960-8. PubMed ID: 12933795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of cryptic nuclear localization signals in the prion protein.
    Gu Y; Hinnerwisch J; Fredricks R; Kalepu S; Mishra RS; Singh N
    Neurobiol Dis; 2003 Mar; 12(2):133-49. PubMed ID: 12667468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells.
    Wang X; Shi Q; Xu K; Gao C; Chen C; Li XL; Wang GR; Tian C; Han J; Dong XP
    PLoS One; 2011 Jan; 6(1):e14602. PubMed ID: 21298055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane topology influences N-glycosylation of the prion protein.
    Walmsley AR; Zeng F; Hooper NM
    EMBO J; 2001 Feb; 20(4):703-12. PubMed ID: 11179215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Most pathogenic mutations do not alter the membrane topology of the prion protein.
    Stewart RS; Harris DA
    J Biol Chem; 2001 Jan; 276(3):2212-20. PubMed ID: 11053411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of a GPI anchor module suitable for protein post-translational modification.
    Schumacher MC; Resenberger U; Seidel RP; Becker CF; Winklhofer KF; Oesterhelt D; Tatzelt J; Engelhard M
    Biopolymers; 2010; 94(4):457-64. PubMed ID: 20593476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting of the prion protein to the cytosol: mechanisms and consequences.
    Miesbauer M; Rambold AS; Winklhofer KF; Tatzelt J
    Curr Issues Mol Biol; 2010; 12(2):109-18. PubMed ID: 19767654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.
    Bate C; Nolan W; Williams A
    J Biol Chem; 2016 Jan; 291(1):160-70. PubMed ID: 26553874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prion protein contains a second endoplasmic reticulum targeting signal sequence located at its C terminus.
    Hölscher C; Bach UC; Dobberstein B
    J Biol Chem; 2001 Apr; 276(16):13388-94. PubMed ID: 11278343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection.
    Marshall KE; Hughson A; Vascellari S; Priola SA; Sakudo A; Onodera T; Baron GS
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27847358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion protein-related proteins from zebrafish are complex glycosylated and contain a glycosylphosphatidylinositol anchor.
    Miesbauer M; Bamme T; Riemer C; Oidtmann B; Winklhofer KF; Baier M; Tatzelt J
    Biochem Biophys Res Commun; 2006 Mar; 341(1):218-24. PubMed ID: 16414019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice.
    Puig B; Altmeppen HC; Linsenmeier L; Chakroun K; Wegwitz F; Piontek UK; Tatzelt J; Bate C; Magnus T; Glatzel M
    PLoS Pathog; 2019 Jan; 15(1):e1007520. PubMed ID: 30608982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Biology of Prion Protein.
    Sarnataro D; Pepe A; Zurzolo C
    Prog Mol Biol Transl Sci; 2017; 150():57-82. PubMed ID: 28838675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.