These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18326198)

  • 1. Characterization of the low-salinity stress in Vibrio vulnificus.
    Wong HC; Liu SH
    J Food Prot; 2008 Feb; 71(2):416-9. PubMed ID: 18326198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility of the heat-, acid-, and bile-adapted Vibrio vulnificus to lethal low-salinity stress.
    Wong HC; Liu SH
    J Food Prot; 2006 Dec; 69(12):2924-8. PubMed ID: 17186660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of low salinity stress in Vibrio parahaemolyticus.
    Huang WS; Wong HC
    J Food Prot; 2012 Feb; 75(2):231-7. PubMed ID: 22289582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High salinity relay as a postharvest processing strategy to reduce vibrio vulnificus levels in Chesapeake Bay oysters (Crassostrea virginica).
    Audemard C; Kator HI; Rhodes MW; Gallivan T; Erskine AJ; Leggett AT; Reece KS
    J Food Prot; 2011 Nov; 74(11):1902-7. PubMed ID: 22054191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of RpoS in the susceptibility of low salinity-adapted Vibrio vulnificus to environmental stresses.
    Tan HJ; Liu SH; Oliver JD; Wong HC
    Int J Food Microbiol; 2010 Feb; 137(2-3):137-42. PubMed ID: 20051307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High salinity relay as a post-harvest processing method for reducing Vibrio vulnificus levels in oysters (Crassostrea virginica).
    Audemard C; Kator HI; Reece KS
    Int J Food Microbiol; 2018 Aug; 279():70-79. PubMed ID: 29738928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-Inhibitory Effect of d-Tryptophan on Vibrio spp. in Shucked and Live Oysters.
    Chen J; Kudo H; Kan K; Kawamura S; Koseki S
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30030231
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of electrolyzed oxidizing water treatment on reducing Vibrio parahaemolyticus and Vibrio vulnificus in raw oysters.
    Ren T; Su YC
    J Food Prot; 2006 Aug; 69(8):1829-34. PubMed ID: 16924906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of vibrio parahaemolyticus and vibrio vulnificus in phosphate-buffered saline and in inoculated whole oysters by high-pressure processing.
    Koo J; Jahncke ML; Reno PW; Hu X; Mallikarjunan P
    J Food Prot; 2006 Mar; 69(3):596-601. PubMed ID: 16541691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrio parahaemolyticus and Vibrio vulnificus Recovered from Oysters during an Oyster Relay Study.
    Elmahdi S; Parveen S; Ossai S; DaSilva LV; Jahncke M; Bowers J; Jacobs J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150510
    [No Abstract]   [Full Text] [Related]  

  • 11. Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts.
    Chen WL; Oliver JD; Wong HC
    Int J Food Microbiol; 2010 Jun; 140(2-3):232-8. PubMed ID: 20406715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary study of transplanting as a process for reducing levels of Vibrio vulnificus and Vibrio parahaemolyticus in shellstock oysters.
    Walton WC; Nelson C; Hochman M; Schwarz J
    J Food Prot; 2013 Jan; 76(1):119-23. PubMed ID: 23317866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression of cold shock and other stress-related genes in Vibrio vulnificus grown in pure culture under shellstock temperature control conditions.
    Limthammahisorn S; Brady YJ; Arias CR
    J Food Prot; 2008 Jan; 71(1):157-64. PubMed ID: 18236677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus.
    Quan Y; Choi KD; Chung D; Shin IS
    Int J Food Microbiol; 2010 Jan; 136(3):255-60. PubMed ID: 20004034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditions for a 5-log reduction of Vibrio vulnificus in oysters through high hydrostatic pressure treatment.
    Kural AG; Chen H
    Int J Food Microbiol; 2008 Feb; 122(1-2):180-7. PubMed ID: 18177963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state.
    Day AP; Oliver JD
    J Microbiol; 2004 Jun; 42(2):69-73. PubMed ID: 15357297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Salinity Relaying to Reduce Vibrio parahaemolyticus and Vibrio vulnificus in Chesapeake Bay Oysters (Crassostrea virginica).
    Parveen S; Jahncke M; Elmahdi S; Crocker H; Bowers J; White C; Gray S; Morris AC; Brohawn K
    J Food Sci; 2017 Feb; 82(2):484-491. PubMed ID: 28099766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium.
    Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN
    Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depuration of Oysters (Crassostrea gigas) contaminated with Vibrio parahaemolyticus and Vibrio vulnificus with UV light and chlorinated seawater.
    Ramos RJ; Miotto M; Squella FJ; Cirolini A; Ferreira JF; Vieira CR
    J Food Prot; 2012 Aug; 75(8):1501-6. PubMed ID: 22856577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR.
    Randa MA; Polz MF; Lim E
    Appl Environ Microbiol; 2004 Sep; 70(9):5469-76. PubMed ID: 15345434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.