BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 18326545)

  • 1. Functional genomics in translational cancer research: focus on breast cancer.
    Yulug IG; Gur-Dedeoglu B
    Brief Funct Genomic Proteomic; 2008 Jan; 7(1):1-7. PubMed ID: 18326545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of genes in retinoblastoma.
    Saxena P; Kaur J
    Clin Chim Acta; 2011 Nov; 412(23-24):2015-21. PubMed ID: 20951689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of differentially expressed genes by meta-analysis of microarray data on breast cancer.
    Kondrakhin YV; Sharipov RN; Keld AE; Kolpakov FA
    In Silico Biol; 2008; 8(5-6):383-411. PubMed ID: 19374127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative genomic classification of human hepatocellular carcinoma].
    Kaposi-Novák P
    Magy Onkol; 2009 Mar; 53(1):61-7. PubMed ID: 19318328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State of the science: molecular classifications of breast cancer for clinical diagnostics.
    Robison JE; Perreard L; Bernard PS
    Clin Biochem; 2004 Jul; 37(7):572-8. PubMed ID: 15234238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated breast cancer genomics.
    Edgren H; Kallioniemi O
    Cancer Cell; 2006 Dec; 10(6):453-4. PubMed ID: 17157784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.
    Haram KM; Peltier HJ; Lu B; Bhasin M; Otu HH; Choy B; Regan M; Libermann TA; Latham GJ; Sanda MG; Arredouani MS
    Prostate; 2008 Oct; 68(14):1517-30. PubMed ID: 18668517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using support vector regression to model the correlation between the clinical metastases time and gene expression profile for breast cancer.
    Chiu SH; Chen CC; Lin TH
    Artif Intell Med; 2008 Nov; 44(3):221-31. PubMed ID: 18678474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MaXlab: a novel application for the cross comparison and integration of biological signatures from microarray studies.
    Khalid S; Khan M; Gorle CB; Fraser K; Wang P; Liu X; Li S
    In Silico Biol; 2008; 8(3-4):363-76. PubMed ID: 19032168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technology insight: Application of molecular techniques to formalin-fixed paraffin-embedded tissues from breast cancer.
    Paik S; Kim CY; Song YK; Kim WS
    Nat Clin Pract Oncol; 2005 May; 2(5):246-54. PubMed ID: 16264960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infectious salmon anaemia virus (ISAV) isolates induce distinct gene expression responses in the Atlantic salmon (Salmo salar) macrophage/dendritic-like cell line TO, assessed using genomic techniques.
    Workenhe ST; Hori TS; Rise ML; Kibenge MJ; Kibenge FS
    Mol Immunol; 2009 Sep; 46(15):2955-74. PubMed ID: 19616850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of candidate genes and pathways that may help explain fertility cycle stage dependent post-resection breast cancer outcome.
    Oh EY; Wood PA; Yang X; Hrushesky WJ
    Breast Cancer Res Treat; 2009 Nov; 118(2):345-59. PubMed ID: 19051007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients.
    Harbeck N; Nimmrich I; Hartmann A; Ross JS; Cufer T; Grützmann R; Kristiansen G; Paradiso A; Hartmann O; Margossian A; Martens J; Schwope I; Lukas A; Müller V; Milde-Langosch K; Nährig J; Foekens J; Maier S; Schmitt M; Lesche R
    J Clin Oncol; 2008 Nov; 26(31):5036-42. PubMed ID: 18711169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach.
    Lancashire LJ; Rees RC; Ball GR
    Artif Intell Med; 2008 Jun; 43(2):99-111. PubMed ID: 18420392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROCK: a breast cancer functional genomics resource.
    Sims D; Bursteinas B; Gao Q; Jain E; MacKay A; Mitsopoulos C; Zvelebil M
    Breast Cancer Res Treat; 2010 Nov; 124(2):567-72. PubMed ID: 20563840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel integrative methods for gene discovery associated with head and neck squamous cell carcinoma development.
    Smith IM; Mithani SK; Liu C; Chang SS; Begum S; Dhara M; Westra W; Sidranksy D; Califano JA
    Arch Otolaryngol Head Neck Surg; 2009 May; 135(5):487-95. PubMed ID: 19451471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics and breast cancer: what can high-throughput genomic approaches actually tell us?
    Sims AH
    J Clin Pathol; 2009 Oct; 62(10):879-85. PubMed ID: 19174421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to detect differentially expressed genes from count-based digital databases by normalizing with housekeeping genes.
    Lü B; Yu J; Xu J; Chen J; Lai M
    Genomics; 2009 Sep; 94(3):211-6. PubMed ID: 19446020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic signatures in breast cancer.
    Fu J; Jeffrey SS
    Mol Biosyst; 2007 Jul; 3(7):466-72. PubMed ID: 17579771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular prediction of the therapeutic response to neoadjuvant chemotherapy in breast cancer.
    Nagasaki K; Miki Y
    Breast Cancer; 2008; 15(2):117-20. PubMed ID: 18274834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.