These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 18326581)

  • 1. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa.
    Zhu K; Rock CO
    J Bacteriol; 2008 May; 190(9):3147-54. PubMed ID: 18326581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa.
    Miller DJ; Zhang YM; Rock CO; White SW
    J Biol Chem; 2006 Jun; 281(26):18025-32. PubMed ID: 16624803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli.
    Rehm BH; Mitsky TA; Steinbüchel A
    Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production.
    Soberón-Chávez G; Aguirre-Ramírez M; Sánchez R
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):675-7. PubMed ID: 15937697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids.
    Déziel E; Lépine F; Milot S; Villemur R
    Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host.
    Cabrera-Valladares N; Richardson AP; Olvera C; Treviño LG; Déziel E; Lépine F; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-rational evolution of the 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA to improve rhamnolipid production in Pseudomonas aeruginosa and Burkholderia glumae.
    Dulcey CE; López de Los Santos Y; Létourneau M; Déziel E; Doucet N
    FEBS J; 2019 Oct; 286(20):4036-4059. PubMed ID: 31177633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli.
    Heath RJ; Rock CO
    J Biol Chem; 1995 Nov; 270(44):26538-42. PubMed ID: 7592873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis.
    Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G
    Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA.
    Moynié L; Hope AG; Finzel K; Schmidberger J; Leckie SM; Schneider G; Burkart MD; Smith AD; Gray DW; Naismith JH
    J Mol Biol; 2016 Jan; 428(1):108-120. PubMed ID: 26562505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
    Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC
    J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis.
    Nguyen C; Haushalter RW; Lee DJ; Markwick PR; Bruegger J; Caldara-Festin G; Finzel K; Jackson DR; Ishikawa F; O'Dowd B; McCammon JA; Opella SJ; Tsai SC; Burkart MD
    Nature; 2014 Jan; 505(7483):427-31. PubMed ID: 24362570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis.
    Heath RJ; Rock CO
    J Biol Chem; 1996 Nov; 271(44):27795-801. PubMed ID: 8910376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis.
    Solaiman DK; Ashby RD; Gunther NW; Zerkowski JA
    Appl Microbiol Biotechnol; 2015 May; 99(10):4333-42. PubMed ID: 25661819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant.
    Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G
    FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis.
    Yuan Y; Leeds JA; Meredith TC
    J Bacteriol; 2012 Oct; 194(19):5185-96. PubMed ID: 22753057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).
    Hoang TT; Schweizer HP
    J Bacteriol; 1997 Sep; 179(17):5326-32. PubMed ID: 9286984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad.
    Twigg MS; Tripathi L; Zompra A; Salek K; Irorere VU; Gutierrez T; Spyroulias GA; Marchant R; Banat IM
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8537-8549. PubMed ID: 29992435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.