These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18326681)

  • 21. Arsenite oxidation and arsenate respiration by a new Thermus isolate.
    Gihring TM; Banfield JF
    FEMS Microbiol Lett; 2001 Nov; 204(2):335-40. PubMed ID: 11731145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park.
    Sokolova TG; González JM; Kostrikina NA; Chernyh NA; Slepova TV; Bonch-Osmolovskaya EA; Robb FT
    Int J Syst Evol Microbiol; 2004 Nov; 54(Pt 6):2353-2359. PubMed ID: 15545483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupled arsenotrophy in a hot spring photosynthetic biofilm at Mono Lake, California.
    Hoeft SE; Kulp TR; Han S; Lanoil B; Oremland RS
    Appl Environ Microbiol; 2010 Jul; 76(14):4633-9. PubMed ID: 20511421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment.
    Müller N; Scherag FD; Pester M; Schink B
    Syst Appl Microbiol; 2015 Sep; 38(6):379-89. PubMed ID: 26194116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis.
    Handley KM; Héry M; Lloyd JR
    Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological response of Desulfurispirillum indicum S5 to arsenate and nitrate as terminal electron acceptors.
    Rauschenbach I; Bini E; Häggblom MM; Yee N
    FEMS Microbiol Ecol; 2012 Jul; 81(1):156-62. PubMed ID: 22404695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California.
    Kulp TR; Hoeft SE; Asao M; Madigan MT; Hollibaugh JT; Fisher JC; Stolz JF; Culbertson CW; Miller LG; Oremland RS
    Science; 2008 Aug; 321(5891):967-70. PubMed ID: 18703741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics.
    Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V
    Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake.
    Deutzmann JS; Schink B
    Appl Environ Microbiol; 2011 Jul; 77(13):4429-36. PubMed ID: 21551281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microbial arsenic cycle in a salt-saturated, extreme environment.
    Oremland RS; Kulp TR; Blum JS; Hoeft SE; Baesman S; Miller LG; Stolz JF
    Science; 2005 May; 308(5726):1305-8. PubMed ID: 15919992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new role for sulfur in arsenic cycling.
    Fisher JC; Wallschläger D; Planer-Friedrich B; Hollibaugh JT
    Environ Sci Technol; 2008 Jan; 42(1):81-5. PubMed ID: 18350879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enterobacter cloacae SLD1a-1 gains a selective advantage from selenate reduction when growing in nitrate-depleted anaerobic environments.
    Leaver JT; Richardson DJ; Butler CS
    J Ind Microbiol Biotechnol; 2008 Aug; 35(8):867-73. PubMed ID: 18449586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1.
    Yamamura S; Ike M; Fujita M
    J Biosci Bioeng; 2003; 96(5):454-60. PubMed ID: 16233555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic.
    Switzer Blum J; Burns Bindi A; Buzzelli J; Stolz JF; Oremland RS
    Arch Microbiol; 1998 Dec; 171(1):19-30. PubMed ID: 9871015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria.
    Oremland RS; Blum JS; Bindi AB; Dowdle PR; Herbel M; Stolz JF
    Appl Environ Microbiol; 1999 Oct; 65(10):4385-92. PubMed ID: 10508064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines.
    Chang JS; Yoon IH; Kim KW
    J Microbiol Biotechnol; 2007 May; 17(5):812-21. PubMed ID: 18051304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ecophysiology of "Halarsenatibacter silvermanii" strain SLAS-1T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California.
    Blum JS; Han S; Lanoil B; Saltikov C; Witte B; Tabita FR; Langley S; Beveridge TJ; Jahnke L; Oremland RS
    Appl Environ Microbiol; 2009 Apr; 75(7):1950-60. PubMed ID: 19218420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer.
    Kanso S; Greene AC; Patel BKC
    Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):869-874. PubMed ID: 12054251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor.
    Hoeft SE; Blum JS; Stolz JF; Tabita FR; Witte B; King GM; Santini JM; Oremland RS
    Int J Syst Evol Microbiol; 2007 Mar; 57(Pt 3):504-512. PubMed ID: 17329775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.