BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 18326725)

  • 1. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ; David LL; Riviere MA; Wilmarth PA; Muir MS; Morton JD
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1016-22. PubMed ID: 18326725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y; Bi H; Li N; Jin H; Yang P; Kong X; Yan S; Lu Y
    Mol Vis; 2010 Jun; 16():1068-75. PubMed ID: 20596256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ
    Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in zebrafish (Danio rerio) lens crystallin content during development.
    Wages P; Horwitz J; Ding L; Corbin RW; Posner M
    Mol Vis; 2013; 19():408-17. PubMed ID: 23441112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass measurements of C-terminally truncated alpha-crystallins from two-dimensional gels identify Lp82 as a major endopeptidase in rat lens.
    Ueda Y; Fukiage C; Shih M; Shearer TR; David LL
    Mol Cell Proteomics; 2002 May; 1(5):357-65. PubMed ID: 12118077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.
    Wang X; Garcia CM; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression.
    Posner M; Hawke M; Lacava C; Prince CJ; Bellanco NR; Corbin RW
    Mol Vis; 2008 Apr; 14():806-14. PubMed ID: 18449354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L; Liu D; Liu P; Yu Y
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens.
    David LL; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteome analysis of hereditary cataractous rat lens alpha-crystallin.
    Kamei A; Takamura S; Nagai M; Takeuchi N
    Biol Pharm Bull; 2004 Dec; 27(12):1923-31. PubMed ID: 15577207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.
    Ueda Y; Duncan MK; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):205-15. PubMed ID: 11773033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens growth and protein changes in the eastern grey kangaroo.
    Augusteyn RC
    Mol Vis; 2011; 17():3234-42. PubMed ID: 22194649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Fujii N
    Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P
    Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin.
    Andley UP; Malone JP; Townsend RR
    PLoS One; 2014; 9(4):e95507. PubMed ID: 24760011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map.
    Lampi KJ; Shih M; Ueda Y; Shearer TR; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):216-24. PubMed ID: 11773034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.