BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 18326725)

  • 21. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses.
    Srivastava OP; Srivastava K; Chaves JM
    Mol Vis; 2008; 14():1872-85. PubMed ID: 18949065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-terminal truncation of alpha-crystallin in hereditary cataractous rat lens.
    Takeuchi N; Ouchida A; Kamei A
    Biol Pharm Bull; 2004 Mar; 27(3):308-14. PubMed ID: 14993793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses.
    Thampi P; Hassan A; Smith JB; Abraham EC
    Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3265-72. PubMed ID: 12356833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cleavage of beta crystallins during maturation of bovine lens.
    Shih M; Lampi KJ; Shearer TR; David LL
    Mol Vis; 1998 Feb; 4():4. PubMed ID: 9485487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W; Calvin HI; David LL; Wu K; McCormack AL; Zhu GP; Fu SC
    Exp Eye Res; 2002 Sep; 75(3):335-46. PubMed ID: 12384096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y; Yi L; Yan G; Fang Y; Jang Y; Wu X; Zhou X; Wei L
    Curr Eye Res; 2010 Jul; 35(7):620-30. PubMed ID: 20597648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyphenol-enriched fraction of
    Choi JI; Kim J; Choung SY
    Mol Vis; 2019; 25():118-128. PubMed ID: 30820147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystallin distribution patterns in concentric layers from toad eye lenses.
    Keenan J; Elia G; Dunn MJ; Orr DF; Pierscionek BK
    Proteomics; 2009 Dec; 9(23):5340-9. PubMed ID: 19813212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens.
    Yanshole LV; Cherepanov IV; Snytnikova OA; Yanshole VV; Sagdeev RZ; Tsentalovich YP
    Mol Vis; 2013; 19():2196-208. PubMed ID: 24227915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different alpha crystallin expression in human age-related and congenital cataract lens epithelium.
    Yang J; Zhou S; Guo M; Li Y; Gu J
    BMC Ophthalmol; 2016 May; 16():67. PubMed ID: 27234311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AlphaA-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens.
    Goishi K; Shimizu A; Najarro G; Watanabe S; Rogers R; Zon LI; Klagsbrun M
    Development; 2006 Jul; 133(13):2585-93. PubMed ID: 16728471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow.
    Kiss AJ; Devries AL; Morgan-Kiss RM
    J Comp Physiol B; 2010 Oct; 180(7):1019-32. PubMed ID: 20490507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation.
    Santhoshkumar P; Udupa P; Murugesan R; Sharma KK
    J Biol Chem; 2008 Mar; 283(13):8477-85. PubMed ID: 18227073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human and monkey lenses cultured with calcium ionophore form alphaB-crystallin lacking the C-terminal lysine, a prominent feature of some human cataracts.
    Nakajima E; David LL; Riviere MA; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5828-36. PubMed ID: 19608539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins.
    Jobby MK; Sharma Y
    FEBS J; 2007 Aug; 274(16):4135-47. PubMed ID: 17651443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence analysis of lens beta-crystallins suggests involvement of calpain in cataract formation.
    David LL; Shearer TR; Shih M
    J Biol Chem; 1993 Jan; 268(3):1937-40. PubMed ID: 8420967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone.
    Moreau KL; King JA
    PLoS One; 2012; 7(5):e37256. PubMed ID: 22655036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens.
    Lampi KJ; Ma Z; Shih M; Shearer TR; Smith JB; Smith DL; David LL
    J Biol Chem; 1997 Jan; 272(4):2268-75. PubMed ID: 8999933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.