These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. Bertram CD; Macaskill C; Moore JE J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898 [TBL] [Abstract][Full Text] [Related]
8. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions. Elich H; Barrett A; Shankar V; Fogelson AL Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062 [TBL] [Abstract][Full Text] [Related]
9. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model. Bertram CD; Macaskill C; Davis MJ; Moore JE Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501 [TBL] [Abstract][Full Text] [Related]
10. The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate? Bertram CD J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38558115 [TBL] [Abstract][Full Text] [Related]
11. The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling. Razavi MS; Nelson TS; Nepiyushchikh Z; Gleason RL; Dixon JB Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1249-H1260. PubMed ID: 28778909 [TBL] [Abstract][Full Text] [Related]
12. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Macdonald AJ; Arkill KP; Tabor GR; McHale NG; Winlove CP Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H305-13. PubMed ID: 18487438 [TBL] [Abstract][Full Text] [Related]
13. Mesenteric lymphatic vessels adapt to mesenteric venous hypertension by becoming weaker pumps. Dongaonkar RM; Nguyen TL; Quick CM; Heaps CL; Hardy J; Laine GA; Wilson E; Stewart RH Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R391-9. PubMed ID: 25519727 [TBL] [Abstract][Full Text] [Related]
14. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. Davis MJ; Scallan JP; Wolpers JH; Muthuchamy M; Gashev AA; Zawieja DC Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H795-808. PubMed ID: 22886407 [TBL] [Abstract][Full Text] [Related]
15. Optimal lymphatic vessel structure. Venugopal AM; Stewart RH; Rajagopalan S; Laine GA; Quick CM Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3700-3. PubMed ID: 17271097 [TBL] [Abstract][Full Text] [Related]
16. [Self-regulation of the pump function of the lymphangion]. Lobov GI; Orlov RS Fiziol Zh SSSR Im I M Sechenova; 1988 Jul; 74(7):977-86. PubMed ID: 3181540 [TBL] [Abstract][Full Text] [Related]
17. [Contractions of the lymphangion under low filling conditions and the absence of stretching stimuli. The possibility of the sucking effect]. Gashev AA; Orlov RS; Zawieja DC Ross Fiziol Zh Im I M Sechenova; 2001 Jan; 87(1):97-109. PubMed ID: 11227869 [TBL] [Abstract][Full Text] [Related]
18. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters. Jamalian S; Davis MJ; Zawieja DC; Moore JE PLoS One; 2016; 11(2):e0148384. PubMed ID: 26845031 [TBL] [Abstract][Full Text] [Related]
19. [Active and passive mechanical properties of the wall of the lymphangion]. Lobov GI; Orlov RS; Kostikova MA Fiziol Zh SSSR Im I M Sechenova; 1989 Feb; 75(2):218-26. PubMed ID: 2721762 [TBL] [Abstract][Full Text] [Related]