BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1832752)

  • 21. Quinolinic acid catabolism is increased in cerebellum of patients with dominantly inherited olivopontocerebellar atrophy.
    Kish SJ; Du F; Parks DA; Robitaille Y; Ball MJ; Schut L; Hornykiewicz O; Schwarcz R
    Ann Neurol; 1991 Jan; 29(1):100-4. PubMed ID: 1825460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new enzyme marker for striatal compartmentalization: NADPH diaphorase activity in the caudate nucleus and putamen of the cat.
    Sandell JH; Graybiel AM; Chesselet MF
    J Comp Neurol; 1986 Jan; 243(3):326-34. PubMed ID: 2419368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The morphogenesis of glutamic acid decarboxylase in the neostriatum of the cat: neuronal and ultrastructural localization.
    Fisher RS; Levine MS; Adinolfi AM; Hull CD; Buchwald NA
    Brain Res; 1987 Jun; 430(2):215-34. PubMed ID: 3300860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of Mn-superoxide dismutase (Mn-SOD) in cholinergic and somatostatin-containing neurons in the rat neostriatum.
    Inagaki S; Suzuki K; Taniguchi N; Takagi H
    Brain Res; 1991 May; 549(1):174-7. PubMed ID: 1680020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human striatum: chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer's disease.
    Selden N; Geula C; Hersh L; Mesulam MM
    Neuroscience; 1994 Jun; 60(3):621-36. PubMed ID: 7523983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective effects of neurotrophin-4/5 and transforming growth factor-alpha on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid.
    Alexi T; Venero JL; Hefti F
    Neuroscience; 1997 May; 78(1):73-86. PubMed ID: 9135090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: localization to intrinsic neurons and not to neocortical afferents.
    Joyce JN; Marshall JF
    Neuroscience; 1987 Mar; 20(3):773-95. PubMed ID: 2955247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetylcholinesterase-containing neurons in cat neostriatum: a morphological and quantitative analysis.
    Parent A; O'Reilly-Fromentin J; Boucher R
    Neurosci Lett; 1980 Dec; 20(3):271-6. PubMed ID: 7443076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic organization of cholinergic neurons in the monkey neostriatum.
    DiFiglia M
    J Comp Neurol; 1987 Jan; 255(2):245-58. PubMed ID: 3819015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quinolinic acid lesions of the caudate putamen in the rat lead to a local increase of ciliary neurotrophic factor.
    Haas SJ; Ahrens A; Petrov S; Schmitt O; Wree A
    J Anat; 2004 Apr; 204(4):271-81. PubMed ID: 15061753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of the Golgi impregnated human (neo)striatal neurons: Observation of the morphological characteristics followed by an emphasis on the functional diversity of cells.
    Krstonošić B; Milošević NT; Gudović R
    Ann Anat; 2023 Feb; 246():152040. PubMed ID: 36460203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmalemmal appositions between cholinergic and non-cholinergic neurons in rat caudate-putamen nuclei.
    Pickel VM; Chan J
    Neuroscience; 1991; 41(2-3):459-72. PubMed ID: 1870700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of components of the guanosine 3',5'-phosphate system in rat caudate-putamen.
    Ariano MA
    Neuroscience; 1983 Nov; 10(3):707-23. PubMed ID: 6139769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calretinin-immunoreactive neurons in the human striatum.
    Parent A; Cicchetti F; Beach TG
    Brain Res; 1995 Mar; 674(2):347-51. PubMed ID: 7796115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sparing of acetylcholinesterase-containing striatal neurons in Huntington's disease.
    Ferrante RJ; Beal MF; Kowall NW; Richardson EP; Martin JB
    Brain Res; 1987 May; 411(1):162-6. PubMed ID: 2955849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short- and long-term consequences of intracranial injections of the excitotoxin, quinolinic acid, as evidenced by GFA immunohistochemistry of astrocytes.
    Björklund H; Olson L; Dahl D; Schwarcz R
    Brain Res; 1986 Apr; 371(2):267-77. PubMed ID: 2938667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NGF receptor (p75)-immunoreactivity in the developing primate basal ganglia.
    Kordower JH; Mufson EJ
    J Comp Neurol; 1993 Jan; 327(3):359-75. PubMed ID: 8440771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large neurons in the primate neostriatum examined with the combined Golgi-electron microscopic method.
    DiFiglia M; Carey J
    J Comp Neurol; 1986 Feb; 244(1):36-52. PubMed ID: 3950089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems.
    Oertel WH; Mugnaini E
    Neurosci Lett; 1984 Jun; 47(3):233-8. PubMed ID: 6147799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential expression of AMPA receptor subunits in substance P receptor-containing neurons of the caudate-putamen of rats.
    Hu HJ; Chen LW; Yung KK; Chan YS
    Neurosci Res; 2004 Jul; 49(3):281-8. PubMed ID: 15196776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.