These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 18327641)
1. Synthetic microvascular networks for quantitative analysis of particle adhesion. Prabhakarpandian B; Pant K; Scott RC; Pattillo CB; Irimia D; Kiani MF; Sundaram S Biomed Microdevices; 2008 Aug; 10(4):585-95. PubMed ID: 18327641 [TBL] [Abstract][Full Text] [Related]
2. Bifurcations: focal points of particle adhesion in microvascular networks. Prabhakarpandian B; Wang Y; Rea-Ramsey A; Sundaram S; Kiani MF; Pant K Microcirculation; 2011 Jul; 18(5):380-9. PubMed ID: 21418388 [TBL] [Abstract][Full Text] [Related]
3. Generation of shear adhesion map using SynVivo synthetic microvascular networks. Smith AM; Prabhakarpandian B; Pant K J Vis Exp; 2014 May; (87):. PubMed ID: 24893648 [TBL] [Abstract][Full Text] [Related]
4. Isolating the influences of fluid dynamics on selectin-mediated particle rolling at venular junctional regions. Jung JJ; Grayson KA; King MR; Lamkin-Kennard KA Microvasc Res; 2018 Jul; 118():144-154. PubMed ID: 29601874 [TBL] [Abstract][Full Text] [Related]
5. A physiologically realistic in vitro model of microvascular networks. Rosano JM; Tousi N; Scott RC; Krynska B; Rizzo V; Prabhakarpandian B; Pant K; Sundaram S; Kiani MF Biomed Microdevices; 2009 Oct; 11(5):1051-7. PubMed ID: 19452279 [TBL] [Abstract][Full Text] [Related]
6. Characterization of nanoparticle delivery in microcirculation using a microfluidic device. Thomas A; Tan J; Liu Y Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074 [TBL] [Abstract][Full Text] [Related]
7. Microfabrication of cylindrical microfluidic channel networks for microvascular research. Huang Z; Li X; Martins-Green M; Liu Y Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching. Camp JP; Stokol T; Shuler ML Biomed Microdevices; 2008 Apr; 10(2):179-86. PubMed ID: 17891456 [TBL] [Abstract][Full Text] [Related]
9. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Lamberti G; Soroush F; Smith A; Kiani MF; Prabhakarpandian B; Pant K Microvasc Res; 2015 May; 99():19-25. PubMed ID: 25708050 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Prabhakarpandian B; Shen MC; Pant K; Kiani MF Microvasc Res; 2011 Nov; 82(3):210-20. PubMed ID: 21763328 [TBL] [Abstract][Full Text] [Related]
11. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device. Sato N; Yao J; Sugawara M; Takei M IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454 [TBL] [Abstract][Full Text] [Related]
12. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function. Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938 [TBL] [Abstract][Full Text] [Related]
13. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
14. Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Lamberti G; Tang Y; Prabhakarpandian B; Wang Y; Pant K; Kiani MF; Wang B Microvasc Res; 2013 Sep; 89():107-14. PubMed ID: 23557880 [TBL] [Abstract][Full Text] [Related]
15. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates. Sarvepalli DP; Schmidtke DW; Nollert MU Ann Biomed Eng; 2009 Jul; 37(7):1331-41. PubMed ID: 19440840 [TBL] [Abstract][Full Text] [Related]
16. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Wu H; Huang B; Zare RN Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971 [TBL] [Abstract][Full Text] [Related]
17. An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies. Schneider MF; Guttenberg Z; Schneider SW; Sritharan K; Myles VM; Pamukci U; Wixforth A Chemphyschem; 2008 Mar; 9(4):641-5. PubMed ID: 18306189 [TBL] [Abstract][Full Text] [Related]
18. A novel microfluidic chip for assessing dynamic adhesion behavior of cell-targeting microbubbles. Yan F; Li X; Jiang C; Jin Q; Zhang Z; Shandas R; Wu J; Liu X; Zheng H Ultrasound Med Biol; 2014 Jan; 40(1):148-57. PubMed ID: 24210864 [TBL] [Abstract][Full Text] [Related]
19. Enhanced viscoelastic focusing of particle in microchannel. Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948 [TBL] [Abstract][Full Text] [Related]
20. Preferential adhesion of leukocytes near bifurcations is endothelium independent. Tousi N; Wang B; Pant K; Kiani MF; Prabhakarpandian B Microvasc Res; 2010 Dec; 80(3):384-8. PubMed ID: 20624406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]