These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18327809)

  • 1. In vivo patellar tracking: clinical motions and patellofemoral indices.
    Nha KW; Papannagari R; Gill TJ; Van de Velde SK; Freiberg AA; Rubash HE; Li G
    J Orthop Res; 2008 Aug; 26(8):1067-74. PubMed ID: 18327809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance imaging of patellofemoral kinematics with weight-bearing.
    Patel VV; Hall K; Ries M; Lindsey C; Ozhinsky E; Lu Y; Majumdar S
    J Bone Joint Surg Am; 2003 Dec; 85(12):2419-24. PubMed ID: 14668513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patellar tracking and patellofemoral geometry in deep knee flexion.
    Moro-oka T; Matsuda S; Miura H; Nagamine R; Urabe K; Kawano T; Higaki H; Iwamoto Y
    Clin Orthop Relat Res; 2002 Jan; (394):161-8. PubMed ID: 11795728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patello-femoral tracking in the weight-bearing knee: a study of asymptomatic volunteers utilising dynamic magnetic resonance imaging: a preliminary report.
    Tennant S; Williams A; Vedi V; Kinmont C; Gedroyc W; Hunt DM
    Knee Surg Sports Traumatol Arthrosc; 2001 May; 9(3):155-62. PubMed ID: 11420789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics.
    Hefzy MS; Yang H
    J Biomed Eng; 1993 Jul; 15(4):289-302. PubMed ID: 8361154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study.
    Powers CM; Ward SR; Fredericson M; Guillet M; Shellock FG
    J Orthop Sports Phys Ther; 2003 Nov; 33(11):677-85. PubMed ID: 14669963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in patellar tracking and knee kinematics among three different total knee designs.
    Chew JT; Stewart NJ; Hanssen AD; Luo ZP; Rand JA; An KN
    Clin Orthop Relat Res; 1997 Dec; (345):87-98. PubMed ID: 9418625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo three-dimensional patellar tracking on the femur.
    Asano T; Akagi M; Koike K; Nakamura T
    Clin Orthop Relat Res; 2003 Aug; (413):222-32. PubMed ID: 12897613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of a dynamic patellar realignment brace on disease determinants for patellofemoral instability in the upright weight-bearing condition.
    Becher C; Schumacher T; Fleischer B; Ettinger M; Smith T; Ostermeier S
    J Orthop Surg Res; 2015 Aug; 10():126. PubMed ID: 26282268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological sagittal plane patellar kinematics during dynamic deep knee flexion.
    Hamai S; Dunbar NJ; Moro-oka TA; Miura H; Iwamoto Y; Banks SA
    Int Orthop; 2013 Aug; 37(8):1477-82. PubMed ID: 23778643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and noninvasive six degrees of freedom patellar tracking during voluntary knee movement.
    Lin F; Makhsous M; Chang AH; Hendrix RW; Zhang LQ
    Clin Biomech (Bristol, Avon); 2003 Jun; 18(5):401-9. PubMed ID: 12763436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo determination of patellofemoral contact positions.
    Komistek RD; Dennis DA; Mabe JA; Walker SA
    Clin Biomech (Bristol, Avon); 2000 Jan; 15(1):29-36. PubMed ID: 10590342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the Patellar Ridge and the Femoral Trochlea in the Patellar Tracking.
    Wang XM; Liu HX; Niu JH; Duan GM; Wang F
    Orthop Surg; 2016 Nov; 8(4):468-474. PubMed ID: 28032712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distal femoral condyle is more internally rotated to the patellar tendon at 90° of flexion in normal knees.
    Kawahara S; Okazaki K; Matsuda S; Nakahara H; Okamoto S; Iwamoto Y
    J Orthop Surg Res; 2015 Apr; 10():54. PubMed ID: 25906977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the patellofemoral joint with kinematic MR fluoroscopy.
    Harman M; Dogan A; Arslan H; Ipeksoy U; Vural S
    Clin Imaging; 2002; 26(2):136-9. PubMed ID: 11852224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of in vivo patellofemoral kinematics for subjects having high-flexion total knee arthroplasty implant with patients having normal knees.
    Leszko F; Sharma A; Komistek RD; Mahfouz MR; Cates HE; Scuderi GR
    J Arthroplasty; 2010 Apr; 25(3):398-404. PubMed ID: 19232891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between Patellar Tracking and the "Screw-home" Mechanism of Tibiofemoral Joint.
    Zhang LK; Wang XM; Niu YZ; Liu HX; Wang F
    Orthop Surg; 2016 Nov; 8(4):490-495. PubMed ID: 28032709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Q-angle influences tibiofemoral and patellofemoral kinematics.
    Mizuno Y; Kumagai M; Mattessich SM; Elias JJ; Ramrattan N; Cosgarea AJ; Chao EY
    J Orthop Res; 2001 Sep; 19(5):834-40. PubMed ID: 11562129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.