These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 18327863)

  • 1. Communication in a protein stack: electron transfer between cytochrome c and bilirubin oxidase within a polyelectrolyte multilayer.
    Dronov R; Kurth DG; Möhwald H; Scheller FW; Lisdat F
    Angew Chem Int Ed Engl; 2008; 47(16):3000-3. PubMed ID: 18327863
    [No Abstract]   [Full Text] [Related]  

  • 2. Electroactive multilayer assemblies of bilirubin oxidase and human cytochrome C mutants: insight in formation and kinetic behavior.
    Wegerich F; Turano P; Allegrozzi M; Möhwald H; Lisdat F
    Langmuir; 2011 Apr; 27(7):4202-11. PubMed ID: 21401056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer in SAM/cytochrome/polyelectrolyte hybrid systems on electrodes: a time-resolved surface-enhanced resonance Raman study.
    Grochol J; Dronov R; Lisdat F; Hildebrandt P; Murgida DH
    Langmuir; 2007 Oct; 23(22):11289-94. PubMed ID: 17902715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a highly efficient O2 cathode based on bilirubin oxidase from Magnaporthe oryzae.
    Cadet M; Brilland X; Gounel S; Louerat F; Mano N
    Chemphyschem; 2013 Jul; 14(10):2097-100. PubMed ID: 23401094
    [No Abstract]   [Full Text] [Related]  

  • 5. Supercapacitor/biofuel cell hybrid device employing biomolecules for energy conversion and charge storage.
    Shen F; Pankratov D; Pankratova G; Toscano MD; Zhang J; Ulstrup J; Chi Q; Gorton L
    Bioelectrochemistry; 2019 Aug; 128():94-99. PubMed ID: 30959399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid biocathode: surface display of O2-reducing enzymes for microbial fuel cell applications.
    Szczupak A; Kol-Kalman D; Alfonta L
    Chem Commun (Camb); 2012 Jan; 48(1):49-51. PubMed ID: 22075939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mediated spectroelectrochemical titration of proteins for redox potential measurements by a separator-less one-compartment bulk electrolysis method.
    Tsujimura S; Kuriyama A; Fujieda N; Kano K; Ikeda T
    Anal Biochem; 2005 Feb; 337(2):325-31. PubMed ID: 15691513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction.
    Lalaoui N; Le Goff A; Holzinger M; Cosnier S
    Chemistry; 2015 Nov; 21(47):16868-73. PubMed ID: 26449635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deactivation of bilirubin oxidase by a product of the reaction of urate and O2.
    Kang C; Shin H; Zhang Y; Heller A
    Bioelectrochemistry; 2004 Dec; 65(1):83-8. PubMed ID: 15522697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains.
    Lisdat F; Dronov R; Möhwald H; Scheller FW; Kurth DG
    Chem Commun (Camb); 2009 Jan; (3):274-83. PubMed ID: 19209302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the stability of the "wired" bilirubin oxidase oxygen cathode in serum.
    Kang C; Shin H; Heller A
    Bioelectrochemistry; 2006 Jan; 68(1):22-6. PubMed ID: 15923154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria.
    Ivnitski D; Artyushkova K; Atanassov P
    Bioelectrochemistry; 2008 Nov; 74(1):101-10. PubMed ID: 18571994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-compartment fructose/air biological fuel cell based on direct electron transfer.
    Wu X; Zhao F; Varcoe JR; Thumser AE; Avignone-Rossa C; Slade RC
    Biosens Bioelectron; 2009 Oct; 25(2):326-31. PubMed ID: 19674887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold single-crystal electrode surface modified with self-assembled monolayers for electron tunneling with bilirubin oxidase.
    Tominaga M; Ohtani M; Taniguchi I
    Phys Chem Chem Phys; 2008 Dec; 10(46):6928-34. PubMed ID: 19030587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells.
    Zeng T; Pankratov D; Falk M; Leimkühler S; Shleev S; Wollenberger U
    Biosens Bioelectron; 2015 Apr; 66():39-42. PubMed ID: 25460879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilirubin the beneficent.
    McDonagh A
    Pediatrics; 2004 Dec; 114(6):1741-2; author reply 1742-3. PubMed ID: 15574652
    [No Abstract]   [Full Text] [Related]  

  • 17. Redox potentials of the blue copper sites of bilirubin oxidases.
    Christenson A; Shleev S; Mano N; Heller A; Gorton L
    Biochim Biophys Acta; 2006 Dec; 1757(12):1634-41. PubMed ID: 17020746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the electron transfer mechanism between cytochrome C and metal electrodes. Evidence for dynamic control at short distances.
    Yue H; Khoshtariya D; Waldeck DH; Grochol J; Hildebrandt P; Murgida DH
    J Phys Chem B; 2006 Oct; 110(40):19906-13. PubMed ID: 17020376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode.
    So K; Kawai S; Hamano Y; Kitazumi Y; Shirai O; Hibi M; Ogawa J; Kano K
    Phys Chem Chem Phys; 2014 Mar; 16(10):4823-9. PubMed ID: 24469104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction.
    Dos Santos L; Climent V; Blanford CF; Armstrong FA
    Phys Chem Chem Phys; 2010 Nov; 12(42):13962-74. PubMed ID: 20852807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.