These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells. Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388 [TBL] [Abstract][Full Text] [Related]
3. Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo. Lemeer S; Pinkse MW; Mohammed S; van Breukelen B; den Hertog J; Slijper M; Heck AJ J Proteome Res; 2008 Apr; 7(4):1555-64. PubMed ID: 18307296 [TBL] [Abstract][Full Text] [Related]
5. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116 [TBL] [Abstract][Full Text] [Related]
6. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods. Chen X; Wu D; Zhao Y; Wong BH; Guo L J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716 [TBL] [Abstract][Full Text] [Related]
7. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Chen Y; Hoehenwarter W Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143 [TBL] [Abstract][Full Text] [Related]
8. Enrichment Strategies in Phosphoproteomics. Leitner A Methods Mol Biol; 2016; 1355():105-21. PubMed ID: 26584921 [TBL] [Abstract][Full Text] [Related]
9. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Chi A; Huttenhower C; Geer LY; Coon JJ; Syka JE; Bai DL; Shabanowitz J; Burke DJ; Troyanskaya OG; Hunt DF Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2193-8. PubMed ID: 17287358 [TBL] [Abstract][Full Text] [Related]
10. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229 [TBL] [Abstract][Full Text] [Related]
11. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments. Courcelles M; Bridon G; Lemieux S; Thibault P J Proteome Res; 2012 Jul; 11(7):3753-65. PubMed ID: 22668510 [TBL] [Abstract][Full Text] [Related]
12. Rapid Shotgun Phosphoproteomics Analysis. Carrera M; Cañas B; Lopez-Ferrer D Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721 [TBL] [Abstract][Full Text] [Related]
13. Analytical strategies in mass spectrometry-based phosphoproteomics. Rosenqvist H; Ye J; Jensen ON Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124 [TBL] [Abstract][Full Text] [Related]
14. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Kwon OK; Kim SJ; Lee YM; Lee YH; Bae YS; Kim JY; Peng X; Cheng Z; Zhao Y; Lee S Proteomics; 2016 Jan; 16(1):136-49. PubMed ID: 26449285 [TBL] [Abstract][Full Text] [Related]
15. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
16. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach. Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782 [TBL] [Abstract][Full Text] [Related]
17. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry. Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397 [TBL] [Abstract][Full Text] [Related]
18. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome. Domon B; Bodenmiller B; Carapito C; Hao Z; Huehmer A; Aebersold R J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317 [TBL] [Abstract][Full Text] [Related]
19. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656 [TBL] [Abstract][Full Text] [Related]
20. High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. Olsen JV; Macek B Methods Mol Biol; 2009; 492():131-42. PubMed ID: 19241030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]