These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 18327945)
21. Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. Zhao W; Wei P; Zhang Q; Dong C; Liu L; Tang X J Am Chem Soc; 2009 Mar; 131(10):3713-20. PubMed ID: 19245204 [TBL] [Abstract][Full Text] [Related]
22. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. Quarez E; Hsu KF; Pcionek R; Frangis N; Polychroniadis EK; Kanatzidis MG J Am Chem Soc; 2005 Jun; 127(25):9177-90. PubMed ID: 15969596 [TBL] [Abstract][Full Text] [Related]
23. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. Zhao LD; Lo SH; He J; Li H; Biswas K; Androulakis J; Wu CI; Hogan TP; Chung DY; Dravid VP; Kanatzidis MG J Am Chem Soc; 2011 Dec; 133(50):20476-87. PubMed ID: 22126301 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of Mg2Si thermoelectric materials by mechanical alloying and spark-plasma sintering process. Lee CH; Lee SH; Chun SY; Lee SJ J Nanosci Nanotechnol; 2006 Nov; 6(11):3429-32. PubMed ID: 17252782 [TBL] [Abstract][Full Text] [Related]
25. Highly Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Compounds by Carrier Modulation and Microstructure Adjustment. Liang H; Lou Q; Zhu YK; Guo J; Wang ZY; Gu SW; Yu W; Feng J; He J; Ge ZH ACS Appl Mater Interfaces; 2021 Sep; 13(38):45589-45599. PubMed ID: 34542277 [TBL] [Abstract][Full Text] [Related]
26. Effect of the Processing Route on the Thermoelectric Performance of Nanostructured CuPb Srinivasan B; Fontaine B; Gucci F; Dorcet V; Saunders TG; Yu M; Cheviré F; Boussard-Pledel C; Halet JF; Gautier R; Reece MJ; Bureau B Inorg Chem; 2018 Oct; 57(20):12976-12986. PubMed ID: 30285420 [TBL] [Abstract][Full Text] [Related]
27. Low Thermal Conductivity and High Thermoelectric Performance in (GeTe) Samanta M; Biswas K J Am Chem Soc; 2017 Jul; 139(27):9382-9391. PubMed ID: 28625055 [TBL] [Abstract][Full Text] [Related]
28. Reducing Lattice Thermal Conductivity of MnTe by Se Alloying toward High Thermoelectric Performance. Dong J; Sun FH; Tang H; Hayashi K; Li H; Shang PP; Miyazaki Y; Li JF ACS Appl Mater Interfaces; 2019 Aug; 11(31):28221-28227. PubMed ID: 31305979 [TBL] [Abstract][Full Text] [Related]
29. High Porosity in Nanostructured Wang Y; Liu WD; Gao H; Wang LJ; Li M; Shi XL; Hong M; Wang H; Zou J; Chen ZG ACS Appl Mater Interfaces; 2019 Aug; 11(34):31237-31244. PubMed ID: 31397997 [TBL] [Abstract][Full Text] [Related]
30. The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics. Li F; Li JF; Li JH; Yao FZ Phys Chem Chem Phys; 2012 Sep; 14(35):12213-20. PubMed ID: 22858990 [TBL] [Abstract][Full Text] [Related]
32. Figure-of-merit enhancement in nanostructured FeSb(2-x)Ag(x) with Ag(1-y)Sb(y) nanoinclusions. Zhao H; Pokharel M; Chen S; Liao B; Lukas K; Opeil C; Chen G; Ren Z Nanotechnology; 2012 Dec; 23(50):505402. PubMed ID: 23196384 [TBL] [Abstract][Full Text] [Related]
33. Enhancing the Thermoelectric Performance of Calcium Cobaltite Ceramics by Tuning Composition and Processing. Yu J; Chen K; Azough F; Alvarez-Ruiz DT; Reece MJ; Freer R ACS Appl Mater Interfaces; 2020 Oct; 12(42):47634-47646. PubMed ID: 33026220 [TBL] [Abstract][Full Text] [Related]
34. A Facile Surfactant-Assisted Reflux Method for the Synthesis of Single-Crystalline Sb2Te3 Nanostructures with Enhanced Thermoelectric Performance. Yang HQ; Miao L; Liu CY; Li C; Honda S; Iwamoto Y; Huang R; Tanemura S ACS Appl Mater Interfaces; 2015 Jul; 7(26):14263-71. PubMed ID: 26060933 [TBL] [Abstract][Full Text] [Related]
35. Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge Chen S; Bai H; Li J; Pan W; Jiang X; Li Z; Chen Z; Yan Y; Su X; Wu J; Uher C; Tang X ACS Appl Mater Interfaces; 2020 Apr; 12(17):19664-19673. PubMed ID: 32255612 [TBL] [Abstract][Full Text] [Related]
36. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. Zheng Z; Su X; Deng R; Stoumpos C; Xie H; Liu W; Yan Y; Hao S; Uher C; Wolverton C; Kanatzidis MG; Tang X J Am Chem Soc; 2018 Feb; 140(7):2673-2686. PubMed ID: 29350916 [TBL] [Abstract][Full Text] [Related]
37. Nanostructures boost the thermoelectric performance of PbS. Johnsen S; He J; Androulakis J; Dravid VP; Todorov I; Chung DY; Kanatzidis MG J Am Chem Soc; 2011 Mar; 133(10):3460-70. PubMed ID: 21332121 [TBL] [Abstract][Full Text] [Related]
38. Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 ≤ x ≤ 0.025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis. Zhang Q; Su X; Yan Y; Xie H; Liang T; You Y; Tang X; Uher C ACS Appl Mater Interfaces; 2016 Feb; 8(5):3268-76. PubMed ID: 26780919 [TBL] [Abstract][Full Text] [Related]
39. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. Ahn K; Han MK; He J; Androulakis J; Ballikaya S; Uher C; Dravid VP; Kanatzidis MG J Am Chem Soc; 2010 Apr; 132(14):5227-35. PubMed ID: 20235578 [TBL] [Abstract][Full Text] [Related]
40. Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. Zhao LD; He J; Wu CI; Hogan TP; Zhou X; Uher C; Dravid VP; Kanatzidis MG J Am Chem Soc; 2012 May; 134(18):7902-12. PubMed ID: 22500784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]