BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1832836)

  • 1. Regulation of ATP hydrolysis in hepatoma 22a mitochondria.
    Chernyak BV; Dukhovich VF; Khodjaev EYu
    Arch Biochem Biophys; 1991 May; 286(2):604-9. PubMed ID: 1832836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the natural protein inhibitor on H+-ATPase hepatoma 22a mitochondria.
    Chernyak BV; Dukhovich VF; Khodjaev EYu
    FEBS Lett; 1987 May; 215(2):300-4. PubMed ID: 2884130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of F0F1-ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels.
    Chinopoulos C; Konràd C; Kiss G; Metelkin E; Töröcsik B; Zhang SF; Starkov AA
    FEBS J; 2011 Apr; 278(7):1112-25. PubMed ID: 21281446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deactivation of F0F1 ATPase in intact plant mitochondria. Effect of pH and inhibitors.
    Valerio M; Diolez P; Haraux F
    Eur J Biochem; 1994 May; 221(3):1071-8. PubMed ID: 8181464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase.
    Klein G; Lunardi J; Vignais PV
    Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrochemical-proton-gradient-activated states of F0F1 ATPase in plant mitochondria as revealed by detergents.
    Valerio M; Diolez P; Haraux F
    Eur J Biochem; 1993 Sep; 216(2):565-71. PubMed ID: 8397084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efflux of adenine nucleotides in mitochondria from rat tumor cells of varying growth rates.
    Lau BW; Chan SH
    Cancer Res; 1984 Oct; 44(10):4458-64. PubMed ID: 6467206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deficiency of uncoupler-stimulated adenosine triphosphatase activity in yeast mitochondria.
    Ezzahid Z; Rigoulet M; Guérin B
    J Gen Microbiol; 1986 May; 132(5):1153-8. PubMed ID: 2945901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex).
    Galante YM; Wong SY; Hatefi Y
    Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial ATPase of Zajdela hepatoma. VI. Effect of extramitochondrial ATP and pH on uncoupler-sensitivity of mitochondrial ATPase activity.
    Luciaková K; Kuzela S
    Neoplasma; 1979; 26(6):691-6. PubMed ID: 44347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase.
    Papa S; Zanotti F; Cocco T; Perrucci C; Candita C; Minuto M
    Eur J Biochem; 1996 Sep; 240(2):461-7. PubMed ID: 8841413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ATP hydrolysis in liver mitochondria from ground squirrel.
    Bronnikov GE; Vinogradova SO; Chernyak BV
    FEBS Lett; 1990 Jun; 266(1-2):83-6. PubMed ID: 2142105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis.
    Tyler DD
    Biochem J; 1980 Dec; 192(3):821-8. PubMed ID: 6453587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ATP hydrolysis and ATP depletion in thymocytes and Ehrlich ascites carcinoma cells.
    Chernyak BV; Dedov VN; Gabai VL
    FEBS Lett; 1994 Jan; 337(1):56-9. PubMed ID: 8276114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium transport and translocation of adenine nucleotides in mitochondria from Morris hepatoma 3924A.
    Eboli ML; Malmström K; Galeotti T; López-Alarcón L; Carafoli E
    Cancer Res; 1979 Jul; 39(7 Pt 1):2737-42. PubMed ID: 445477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and deactivation of F0F1-ATPase in yeast mitochondria.
    Schouppe C; Vaillier J; Venard R; Rigoulet M; Velours J; Haraux F
    J Bioenerg Biomembr; 1999 Apr; 31(2):105-17. PubMed ID: 10449237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of octylglucoside on the interactions of chloroplast coupling factor 1 (CF1) with adenine nucleotides.
    Pick U; Bassilian S
    Eur J Biochem; 1983 Jun; 133(2):289-97. PubMed ID: 6221928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex.
    Hanley-Trawick S; Carpen ME; Dunaway-Mariano D; Pedersen PL; Hullihen J
    Arch Biochem Biophys; 1989 Jan; 268(1):116-23. PubMed ID: 2521440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adenine nucleotide catabolism in nonphosphorylating mitochondria of different tissues.
    Ziegler M; Dubiel W; Henke W; Jung K; Pimenov AM; Tikhonov YuV ; Togusov RT; Gerber G
    Biomed Biochim Acta; 1989; 48(2-3):S48-52. PubMed ID: 2730629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.