These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18328796)

  • 1. Critical overview of Nitinol surfaces and their modifications for medical applications.
    Shabalovskaya S; Anderegg J; Van Humbeeck J
    Acta Biomater; 2008 May; 4(3):447-67. PubMed ID: 18328796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modifications of nitinol.
    Haider W; Munroe N; Tek V; Pulletikurthi C; Gill PK; Pandya S
    J Long Term Eff Med Implants; 2009; 19(2):113-22. PubMed ID: 20666711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrochemical characteristics of native Nitinol surfaces.
    Shabalovskaya SA; Rondelli GC; Undisz AL; Anderegg JW; Burleigh TD; Rettenmayr ME
    Biomaterials; 2009 Aug; 30(22):3662-71. PubMed ID: 19345407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material.
    Shabalovskaya SA
    Biomed Mater Eng; 2002; 12(1):69-109. PubMed ID: 11847410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of surface oxides on the distribution and release of nickel from Nitinol wires.
    Shabalovskaya SA; Tian H; Anderegg JW; Schryvers DU; Carroll WU; Van Humbeeck J
    Biomaterials; 2009 Feb; 30(4):468-77. PubMed ID: 18996586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release.
    Clarke B; Carroll W; Rochev Y; Hynes M; Bradley D; Plumley D
    J Biomed Mater Res A; 2006 Oct; 79(1):61-70. PubMed ID: 16758455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys.
    Shabalovskaya SA
    Biomed Mater Eng; 1996; 6(4):267-89. PubMed ID: 8980835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.
    Stepan LL; Levi DS; Gans E; Mohanchandra KP; Ujihara M; Carman GP
    J Biomed Mater Res A; 2007 Sep; 82(3):768-76. PubMed ID: 17330873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Electropolishing on NiTi Alloy Stents and Its Influence on Corrosion Behavior.
    Kim J; Park JK; Kim HK; Unnithan AR; Kim CS; Park CH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2333-339. PubMed ID: 29641158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of surface oxide thickness and structure on the corrosion and nickel elution behavior of nitinol biomedical implants.
    Rosenbloom SN; Kumar P; Lasley C
    J Biomed Mater Res B Appl Biomater; 2021 Sep; 109(9):1334-1343. PubMed ID: 33410251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion resistance, chemistry, and mechanical aspects of Nitinol surfaces formed in hydrogen peroxide solutions.
    Shabalovskaya SA; Anderegg JW; Undisz A; Rettenmayr M; Rondelli GC
    J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1490-9. PubMed ID: 22689286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the passive film on mechanically damaged nitinol.
    Schroeder V
    J Biomed Mater Res A; 2009 Jul; 90(1):1-17. PubMed ID: 18481784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of new materials based on nano-structured nitinol with titanium and tantalum composite surface layers: experimental analysis in vitro and in vivo.
    Sevost'yanov MA; Nasakina EO; Baikin AS; Sergienko KV; Konushkin SV; Kaplan MA; Seregin AV; Leonov AV; Kozlov VA; Shkirin AV; Bunkin NF; Kolmakov AG; Simakov SV; Gudkov SV
    J Mater Sci Mater Med; 2018 Mar; 29(3):33. PubMed ID: 29546502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications.
    Es-Souni M; Es-Souni M; Fischer-Brandies H
    Anal Bioanal Chem; 2005 Feb; 381(3):557-67. PubMed ID: 15660223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface finishing of Nitinol for implantable medical devices: A review.
    Mani G; Porter D; Grove K; Collins S; Ornberg A; Shulfer R
    J Biomed Mater Res B Appl Biomater; 2022 Dec; 110(12):2763-2778. PubMed ID: 35729868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures.
    Pun DK; Berzins DW
    Dent Mater; 2008 Feb; 24(2):221-7. PubMed ID: 17624421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.
    Mahtabi MJ; Shamsaei N; Mitchell MR
    J Mech Behav Biomed Mater; 2015 Oct; 50():228-54. PubMed ID: 26160028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-immersion ion-implanted nitinol surface with depressed nickel concentration for implants in blood.
    Maitz MF; Shevchenko N
    J Biomed Mater Res A; 2006 Feb; 76(2):356-65. PubMed ID: 16270338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents.
    Robertson SW; Imbeni V; Wenk HR; Ritchie RO
    J Biomed Mater Res A; 2005 Feb; 72(2):190-9. PubMed ID: 15625682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Nitinol surface with nanotubes and/or ordered nanopores on cell behavior.
    Vrchovecká K; Mrázková J; Pávková Goldbergová M
    Metallomics; 2022 Feb; 14(1):. PubMed ID: 35084501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.