These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18329047)

  • 1. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.
    Prats C; Giró A; Ferrer J; López D; Vives-Rego J
    J Theor Biol; 2008 May; 252(1):56-68. PubMed ID: 18329047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase.
    Prats C; López D; Giró A; Ferrer J; Valls J
    J Theor Biol; 2006 Aug; 241(4):939-53. PubMed ID: 16524598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division.
    Dens EJ; Bernaerts K; Standaert AR; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INDISIM, an individual-based discrete simulation model to study bacterial cultures.
    Ginovart M; López D; Valls J
    J Theor Biol; 2002 Jan; 214(2):305-19. PubMed ID: 11812180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the lag phase to exponential growth transition by incorporating inoculum characteristics.
    Verhulst AJ; Cappuyns AM; Van Derlinden E; Bernaerts K; Van Impe JF
    Food Microbiol; 2011 Jun; 28(4):656-66. PubMed ID: 21511125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell division theory and individual-based modeling of microbial lag: part II. Modeling lag phenomena induced by temperature shifts.
    Dens EJ; Bernaerts K; Standaert AR; Kreft JU; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):319-32. PubMed ID: 15913823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive modelling of the microbial lag phase: a review.
    Swinnen IA; Bernaerts K; Dens EJ; Geeraerd AH; Van Impe JF
    Int J Food Microbiol; 2004 Jul; 94(2):137-59. PubMed ID: 15193801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connection between stochastic and deterministic modelling of microbial growth.
    Kutalik Z; Razaz M; Baranyi J
    J Theor Biol; 2005 Jan; 232(2):285-99. PubMed ID: 15530497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes.
    Jenzsch M; Gnoth S; Beck M; Kleinschmidt M; Simutis R; Lübbert A
    J Biotechnol; 2006 Dec; 127(1):84-94. PubMed ID: 16962679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual-based modeling of phytoplankton: evaluating approaches for applying the cell quota model.
    Hellweger FL; Kianirad E
    J Theor Biol; 2007 Dec; 249(3):554-65. PubMed ID: 17900626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass growth rate during the prokaryote cell cycle.
    Koch AL
    Crit Rev Microbiol; 1993; 19(1):17-42. PubMed ID: 8481211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions.
    Huang L
    J Food Sci; 2008 Jun; 73(5):E235-42. PubMed ID: 18576996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the lag phase and growth initiation of a yeast culture by means of an individual-based model.
    Ginovart M; Prats C; Portell X; Silbert M
    Food Microbiol; 2011 Jun; 28(4):810-7. PubMed ID: 21511143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Quantitative description of microbial growth in a batch culture depending on the physiologic state of inocula].
    Dorofeev AG; Panikov NS
    Mikrobiologiia; 1991; 60(4):652-60. PubMed ID: 1770867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model of Saccharomyces cerevisiae growth in response to cadmium toxicity.
    Hietala KA; Lynch ML; Allshouse JC; Johns CJ; Roane TM
    J Basic Microbiol; 2006; 46(3):196-202. PubMed ID: 16721879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of starvation on expression of the ribosomal RNA rrnB P2 promoter during the lag phase of Pseudomonas fluorescens.
    McKellar RC
    Int J Food Microbiol; 2007 Mar; 114(3):307-15. PubMed ID: 17169452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with Pseudomonas fluorescens.
    McKellar RC
    Int J Food Microbiol; 2008 Jan; 121(1):11-7. PubMed ID: 18036694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the lag phase and initial decline of microbial growth curves.
    Yates GT; Smotzer T
    J Theor Biol; 2007 Feb; 244(3):511-7. PubMed ID: 17028032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Continuous-discrete models of the dynamics of an isolated population and of 2 competing species].
    Nedorezov LV; Nazarov IN
    Zh Obshch Biol; 2000; 61(1):74-86. PubMed ID: 10732490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.