BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 18329116)

  • 1. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples.
    Cébron A; Norini MP; Beguiristain T; Leyval C
    J Microbiol Methods; 2008 May; 73(2):148-59. PubMed ID: 18329116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments.
    Zhou HW; Guo CL; Wong YS; Tam NF
    FEMS Microbiol Lett; 2006 Sep; 262(2):148-57. PubMed ID: 16923069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics.
    Liang C; Huang Y; Wang Y; Ye Q; Zhang Z; Wang H
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2427-2440. PubMed ID: 30661109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation.
    Lu C; Hong Y; Liu J; Gao Y; Ma Z; Yang B; Ling W; Waigi MG
    Environ Pollut; 2019 Aug; 251():773-782. PubMed ID: 31121542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.
    Sawulski P; Clipson N; Doyle E
    Biodegradation; 2014 Nov; 25(6):835-47. PubMed ID: 25095739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil.
    Martin F; Malagnoux L; Violet F; Jakoncic J; Jouanneau Y
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5125-35. PubMed ID: 22903320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases in the sediments from the Pearl River estuary, China.
    Wu P; Wang YS; Sun FL; Wu ML; Peng YL
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):875-84. PubMed ID: 23558584
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Liang C; Huang Y; Wang H
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River.
    Xia X; Xia N; Lai Y; Dong J; Zhao P; Zhu B; Li Z; Ye W; Yuan Y; Huang J
    Chemosphere; 2015 Jun; 128():236-44. PubMed ID: 25723716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia.
    Lozada M; Riva Mercadal JP; Guerrero LD; Di Marzio WD; Ferrero MA; Dionisi HM
    BMC Microbiol; 2008 Mar; 8():50. PubMed ID: 18366740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments.
    Debruyn JM; Chewning CS; Sayler GS
    Environ Sci Technol; 2007 Aug; 41(15):5426-32. PubMed ID: 17822112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil.
    Cébron A; Beguiristain T; Faure P; Norini MP; Masfaraud JF; Leyval C
    Appl Environ Microbiol; 2009 Oct; 75(19):6322-30. PubMed ID: 19633127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: Bacterial community and functional gene expression mechanisms.
    Guo M; Gong Z; Miao R; Jia C; Rookes J; Cahill D; Zhuang J
    Chemosphere; 2018 Dec; 212():15-23. PubMed ID: 30138851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils.
    Park JW; Crowley DE
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1322-9. PubMed ID: 16804694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments.
    Tian M; Du D; Zhou W; Zeng X; Cheng G
    Braz J Microbiol; 2017; 48(2):305-313. PubMed ID: 28065387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indigenous PAH degraders along the gradient of the Yangtze Estuary of China: Relationships with pollutants and their bioremediation implications.
    Liu X; Liu M; Chen X; Yang Y; Hou L; Wu S; Zhu P
    Mar Pollut Bull; 2019 May; 142():419-427. PubMed ID: 31232319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of Functional Bacteria in a Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Bioreactor.
    Wang R; Chen X; Yang Q
    Water Environ Res; 2018 Dec; 90(12):2090-2099. PubMed ID: 30538017
    [No Abstract]   [Full Text] [Related]  

  • 18. Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria.
    Moser R; Stahl U
    Appl Microbiol Biotechnol; 2001 May; 55(5):609-18. PubMed ID: 11414329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes.
    Meyer S; Moser R; Neef A; Stahl U; Kämpfer P
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1731-1741. PubMed ID: 10439412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.