BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 18329862)

  • 1. Protein delivery using nanoparticles based on microemulsions with different structure-types.
    Graf A; Jack KS; Whittaker AK; Hook SM; Rades T
    Eur J Pharm Sci; 2008 Apr; 33(4-5):434-44. PubMed ID: 18329862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.
    Graf A; Ablinger E; Peters S; Zimmer A; Hook S; Rades T
    Int J Pharm; 2008 Feb; 350(1-2):351-60. PubMed ID: 17923347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization.
    Krauel K; Davies NM; Hook S; Rades T
    J Control Release; 2005 Aug; 106(1-2):76-87. PubMed ID: 15967536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation.
    Graf A; Rades T; Hook SM
    Eur J Pharm Sci; 2009 Apr; 37(1):53-61. PubMed ID: 19167488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing entrapment of peptides within poly(alkyl cyanoacrylate) nanoparticles prepared from water-in-oil microemulsions by copolymerization.
    Liang M; Davies NM; Toth I
    Int J Pharm; 2008 Oct; 362(1-2):141-6. PubMed ID: 18598746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of poly (alkylcyanoacrylate) nanoparticles by polymerization of water-free microemulsions.
    Krauel K; Graf A; Hook SM; Davies NM; Rades T
    J Microencapsul; 2006 Aug; 23(5):499-512. PubMed ID: 16980272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of colloidal drug delivery systems from the naked eye to Cryo-FESEM.
    Krauel K; Girvan L; Hook S; Rades T
    Micron; 2007; 38(8):796-803. PubMed ID: 17698364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions.
    Djordjevic L; Primorac M; Stupar M
    Int J Pharm; 2005 May; 296(1-2):73-9. PubMed ID: 15885457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study.
    Mulik R; Mahadik K; Paradkar A
    Eur J Pharm Sci; 2009 Jun; 37(3-4):395-404. PubMed ID: 19491031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization.
    Liu J; Gong T; Wang C; Zhong Z; Zhang Z
    Int J Pharm; 2007 Aug; 340(1-2):153-62. PubMed ID: 17428627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose.
    Yi T; Wan J; Xu H; Yang X
    Eur J Pharm Sci; 2008 Aug; 34(4-5):274-80. PubMed ID: 18541418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of internal structure of selected water-Tween 40-Imwitor 308-IPM microemulsions on ketoprofene release.
    Podlogar F; Bester Rogac M; Gasperlin M
    Int J Pharm; 2005 Sep; 302(1-2):68-77. PubMed ID: 16099611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions.
    Junyaprasert VB; Boonme P; Songkro S; Krauel K; Rades T
    J Pharm Pharm Sci; 2007; 10(3):288-98. PubMed ID: 17727792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microemulsion formulations for the transdermal delivery of testosterone.
    Hathout RM; Woodman TJ; Mansour S; Mortada ND; Geneidi AS; Guy RH
    Eur J Pharm Sci; 2010 Jun; 40(3):188-96. PubMed ID: 20304048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microemulsions as potential ocular drug delivery systems: phase diagrams and physical properties depending on ingredients.
    Radomska-Soukharev A; Wojciechowska J
    Acta Pol Pharm; 2005; 62(6):465-71. PubMed ID: 16583987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods.
    Podlogar F; Gasperlin M; Tomsic M; Jamnik A; Rogac MB
    Int J Pharm; 2004 May; 276(1-2):115-28. PubMed ID: 15113620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation of solid lipid nanoparticles by microemulsion technique].
    Mao SR; Wang YZ; Ji HY; Bi DZ
    Yao Xue Xue Bao; 2003 Aug; 38(8):624-6. PubMed ID: 14628457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidylcholine embedded microemulsions: physical properties and improved Caco-2 cell permeability.
    Spernath A; Aserin A; Ziserman L; Danino D; Garti N
    J Control Release; 2007 Jun; 119(3):279-90. PubMed ID: 17475359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.