These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18330543)

  • 21. Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRα (PAQR7): Shared ligand binding with AdipoR1 and its structural basis.
    Kelder J; Pang Y; Dong J; Schaftenaar G; Thomas P
    J Steroid Biochem Mol Biol; 2022 May; 219():106082. PubMed ID: 35189329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of PD-L1 binding sites by a combined FMO/GRID-DRY approach.
    Paciotti R; Agamennone M; Coletti C; Storchi L
    J Comput Aided Mol Des; 2020 Aug; 34(8):897-914. PubMed ID: 32185582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A
    Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific interactions between 2-trans enoyl-acyl carrier protein reductase and its ligand: Protein-ligand docking and ab initio fragment molecular orbital calculations.
    Phusi N; Sato R; Ezawa T; Tomioka S; Hanwarinroj C; Khamsri B; Kamsri P; Punkvang A; Pungpo P; Kurita N
    J Mol Graph Model; 2019 May; 88():299-308. PubMed ID: 30826710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation analyses on binding affinity of substituted benzenesulfonamides with carbonic anhydrase using ab initio MO calculations on their complex structures.
    Yoshida T; Munei Y; Hitaoka S; Chuman H
    J Chem Inf Model; 2010 May; 50(5):850-60. PubMed ID: 20415451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design.
    Watanabe C; Fukuzawa K; Okiyama Y; Tsukamoto T; Kato A; Tanaka S; Mochizuki Y; Nakano T
    J Mol Graph Model; 2013 Apr; 41():31-42. PubMed ID: 23467020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method.
    Fukuzawa K; Mochizuki Y; Tanaka S; Kitaura K; Nakano T
    J Phys Chem B; 2006 Aug; 110(32):16102-10. PubMed ID: 16898767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study.
    Nakamura S; Akaki T; Nishiwaki K; Nakatani M; Kawase Y; Takahashi Y; Nakanishi I
    J Comput Chem; 2023 Mar; 44(7):824-831. PubMed ID: 36444861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the binding interactions of progesterone using muteins of the human progesterone receptor ligand binding domain designed on the basis of a three-dimensional protein model.
    Letz M; Bringmann P; Mann M; Mueller-Fahrnow A; Reipert D; Scholz P; Wurtz JM; Egner U
    Biochim Biophys Acta; 1999 Jan; 1429(2):391-400. PubMed ID: 9989224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method.
    Takaya D; Niwa H; Mikuni J; Nakamura K; Handa N; Tanaka A; Yokoyama S; Honma T
    J Mol Graph Model; 2020 Sep; 99():107599. PubMed ID: 32348940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand-dependent cross-talk between steroid and thyroid hormone receptors. Evidence for common transcriptional coactivator(s).
    Zhang X; Jeyakumar M; Bagchi MK
    J Biol Chem; 1996 Jun; 271(25):14825-33. PubMed ID: 8662980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription.
    Georgiakaki M; Chabbert-Buffet N; Dasen B; Meduri G; Wenk S; Rajhi L; Amazit L; Chauchereau A; Burger CW; Blok LJ; Milgrom E; Lombès M; Guiochon-Mantel A; Loosfelt H
    Mol Endocrinol; 2006 Sep; 20(9):2122-40. PubMed ID: 16645042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between 1alpha,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: a correlated fragment molecular orbital study.
    Yamagishi K; Tokiwa H; Makishima M; Yamada S
    J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):63-7. PubMed ID: 20236613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo.
    Tetel MJ; Giangrande PH; Leonhardt SA; McDonnell DP; Edwards DP
    Mol Endocrinol; 1999 Jun; 13(6):910-24. PubMed ID: 10379890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ab initio base fragment molecular orbital studies of influenza viral hemagglutinin HA1 full-domains in complex with sialoside receptors.
    Sawada T; Hashimoto T; Tokiwa H; Suzuki T; Nakano H; Ishida H; Kiso M; Suzuki Y
    J Mol Genet Med; 2008 Nov; 3(1):133-42. PubMed ID: 19565017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: II. Protein and Its Ligand-Binding System Studies.
    Okiyama Y; Watanabe C; Fukuzawa K; Mochizuki Y; Nakano T; Tanaka S
    J Phys Chem B; 2019 Feb; 123(5):957-973. PubMed ID: 30532968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The FMO2 analysis of the ligand-receptor binding energy: the Biscarbene-Gold(I)/DNA G-Quadruplex case study.
    Paciotti R; Coletti C; Marrone A; Re N
    J Comput Aided Mol Des; 2022 Dec; 36(12):851-866. PubMed ID: 36318393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors.
    Xu F; Tanaka S; Watanabe H; Shimane Y; Iwasawa M; Ohishi K; Maruyama T
    Viruses; 2018 May; 10(5):. PubMed ID: 29751531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction Energies in Complexes of Zn and Amino Acids: A Comparison of Ab Initio and Force Field Based Calculations.
    Ahlstrand E; Hermansson K; Friedman R
    J Phys Chem A; 2017 Apr; 121(13):2643-2654. PubMed ID: 28272891
    [