BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18330550)

  • 1. Kinetic analysis of arm reaching movements during voluntary and passive rotation of the torso.
    Bortolami SB; Pigeon P; Dizio P; Lackner JR
    Exp Brain Res; 2008 Jun; 187(4):509-23. PubMed ID: 18330550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.
    Pigeon P; Dizio P; Lackner JR
    J Neurophysiol; 2013 Sep; 110(6):1370-84. PubMed ID: 23803330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching during virtual rotation: context specific compensations for expected coriolis forces.
    Cohn JV; DiZio P; Lackner JR
    J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics model for analyzing reaching movements during active and passive torso rotation.
    Bortolami SB; Pigeon P; Dizio P; Lackner JR
    Exp Brain Res; 2008 Jun; 187(4):525-34. PubMed ID: 18330549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid adaptation to Coriolis force perturbations of arm trajectory.
    Lackner JR; Dizio P
    J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of underestimating the kinematics of trunk rotation on simultaneous reaching movements: predictions of a biomechanical model.
    Simoneau M; Guillaud É; Blouin J
    J Neuroeng Rehabil; 2013 Jun; 10():54. PubMed ID: 23758968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.
    Lackner JR; Dizio P
    J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid adaptation to Coriolis force perturbations of voluntary body sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2028-2041. PubMed ID: 30943090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.
    Naito K; Takagi T; Kubota H; Maruyama T
    Hum Mov Sci; 2017 Aug; 54():363-376. PubMed ID: 28692836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to Coriolis force perturbation of movement trajectory; role of proprioceptive and cutaneous somatosensory feedback.
    Lackner JR; DiZio P
    Adv Exp Med Biol; 2002; 508():69-78. PubMed ID: 12171153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects.
    DiZio P; Lackner JR
    J Neurophysiol; 2001 Feb; 85(2):784-9. PubMed ID: 11160512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation to Coriolis perturbations of voluntary body sway transfers to preprogrammed fall-recovery behavior.
    Bakshi A; Ventura J; DiZio P; Lackner JR
    J Neurophysiol; 2014 Mar; 111(5):977-83. PubMed ID: 24304863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vestibular contribution to the planning of reach trajectories.
    Bockisch CJ; Haslwanter T
    Exp Brain Res; 2007 Sep; 182(3):387-97. PubMed ID: 17562026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid adaptation of torso pointing movements to perturbations of the base of support.
    Hudson TE; Lackner JR; DiZio P
    Exp Brain Res; 2005 Sep; 165(3):283-93. PubMed ID: 15942737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The leading joint hypothesis for spatial reaching arm motions.
    Ambike S; Schmiedeler JP
    Exp Brain Res; 2013 Feb; 224(4):591-603. PubMed ID: 23229774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Comparisons Among Fastball, Slider, Curveball, and Changeup Pitch Types and Between Balls and Strikes in Professional Baseball Pitchers.
    Escamilla RF; Fleisig GS; Groeschner D; Akizuki K
    Am J Sports Med; 2017 Dec; 45(14):3358-3367. PubMed ID: 28968139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation.
    DiZio P; Lackner JR
    J Vestib Res; 2002-2003; 12(5-6):291-9. PubMed ID: 14501105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.