These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
566 related articles for article (PubMed ID: 18330564)
1. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Dheilly A; Linossier I; Darchen A; Hadjiev D; Corbel C; Alonso V Appl Microbiol Biotechnol; 2008 May; 79(1):157-64. PubMed ID: 18330564 [TBL] [Abstract][Full Text] [Related]
2. Monitoring bacterial-demineralization of human dentine by electrochemical impedance spectroscopy. Xu Z; Neoh KG; Amaechi B; Kishen A J Dent; 2010 Feb; 38(2):138-48. PubMed ID: 19804810 [TBL] [Abstract][Full Text] [Related]
3. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. Andersson S; Kuttuva Rajarao G; Land CJ; Dalhammar G FEMS Microbiol Lett; 2008 Jun; 283(1):83-90. PubMed ID: 18422628 [TBL] [Abstract][Full Text] [Related]
4. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system. Doğruöz N; Göksay D; Ilhan-Sungur E; Cotuk A J Basic Microbiol; 2009 Sep; 49 Suppl 1():S5-12. PubMed ID: 19455520 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method. Rivas L; Dykes GA; Fegan N J Microbiol Methods; 2007 Apr; 69(1):44-51. PubMed ID: 17239460 [TBL] [Abstract][Full Text] [Related]
6. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates. Dargahi M; Hosseinidoust Z; Tufenkji N; Omanovic S Colloids Surf B Biointerfaces; 2014 May; 117():152-7. PubMed ID: 24681392 [TBL] [Abstract][Full Text] [Related]
7. Changes in the electrochemical interface as a result of the growth of Pseudomonas fluorescens biofilms on gold. Busalmen JP; de Sánchez SR Biotechnol Bioeng; 2003 Jun; 82(5):619-24. PubMed ID: 12652486 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. DeQueiroz GA; Day DF J Appl Microbiol; 2007 Oct; 103(4):794-802. PubMed ID: 17897181 [TBL] [Abstract][Full Text] [Related]
9. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. Yoshida S; Ogawa N; Fujii T; Tsushima S J Appl Microbiol; 2009 Mar; 106(3):790-800. PubMed ID: 19191976 [TBL] [Abstract][Full Text] [Related]
10. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel. Miyanaga K; Terashi R; Kawai H; Unno H; Tanji Y Biotechnol Bioeng; 2007 Jul; 97(4):850-7. PubMed ID: 17163515 [TBL] [Abstract][Full Text] [Related]
11. Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. Pompilio A; Piccolomini R; Picciani C; D'Antonio D; Savini V; Di Bonaventura G FEMS Microbiol Lett; 2008 Oct; 287(1):41-7. PubMed ID: 18681866 [TBL] [Abstract][Full Text] [Related]
12. Bacterial adhesion to glass and metal-oxide surfaces. Li B; Logan BE Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011 [TBL] [Abstract][Full Text] [Related]
13. Model system studies of the influence of bacterial biofilm formation on mineral surface reactivity. Brydie JR; Wogelius RA; Boult S; Merrifield CM; Vaughan DJ Biofouling; 2009; 25(5):463-72. PubMed ID: 19353390 [TBL] [Abstract][Full Text] [Related]
14. Formation of biofilm by Staphylococcus xylosus. Planchon S; Gaillard-Martinie B; Dordet-Frisoni E; Bellon-Fontaine MN; Leroy S; Labadie J; Hébraud M; Talon R Int J Food Microbiol; 2006 May; 109(1-2):88-96. PubMed ID: 16503066 [TBL] [Abstract][Full Text] [Related]
15. Characterization of biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces. Ngwai YB; Adachi Y; Ogawa Y; Hara H J Microbiol Immunol Infect; 2006 Aug; 39(4):278-91. PubMed ID: 16926973 [TBL] [Abstract][Full Text] [Related]
16. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. Sheng X; Ting YP; Pehkonen SO J Colloid Interface Sci; 2008 May; 321(2):256-64. PubMed ID: 18343395 [TBL] [Abstract][Full Text] [Related]
17. Effect of shear stress on growth, adhesion and biofilm formation of Pseudomonas aeruginosa with antibiotic-induced morphological changes. Fonseca AP; Sousa JC Int J Antimicrob Agents; 2007 Sep; 30(3):236-41. PubMed ID: 17574822 [TBL] [Abstract][Full Text] [Related]
18. An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers. Woodworth BA; Tamashiro E; Bhargave G; Cohen NA; Palmer JN Am J Rhinol; 2008; 22(3):235-8. PubMed ID: 18588754 [TBL] [Abstract][Full Text] [Related]
19. Effects of substrates on biofilm formation observed by atomic force microscopy. Oh YJ; Lee NR; Jo W; Jung WK; Lim JS Ultramicroscopy; 2009 Jul; 109(8):874-80. PubMed ID: 19394143 [TBL] [Abstract][Full Text] [Related]
20. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms. Salek MM; Jones SM; Martinuzzi RJ Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]