These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 18330564)

  • 21. Laser disruption of biofilm.
    Krespi YP; Stoodley P; Hall-Stoodley L
    Laryngoscope; 2008 Jul; 118(7):1168-73. PubMed ID: 18401277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.
    Volle CB; Ferguson MA; Aidala KE; Spain EM; Núñez ME
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):32-40. PubMed ID: 18815013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa.
    Herzberg M; Elimelech M
    ISME J; 2008 Feb; 2(2):180-94. PubMed ID: 18049459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mycobacterium marinum biofilm formation reveals cording morphology.
    Hall-Stoodley L; Brun OS; Polshyna G; Barker LP
    FEMS Microbiol Lett; 2006 Apr; 257(1):43-9. PubMed ID: 16553830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552).
    Busalmen JP; de Sánchez SR
    Appl Environ Microbiol; 2005 Oct; 71(10):6235-40. PubMed ID: 16204543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ.
    Sandt C; Smith-Palmer T; Pink J; Brennan L; Pink D
    J Appl Microbiol; 2007 Nov; 103(5):1808-20. PubMed ID: 17953591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATR-IR spectroscopy.
    Kang SY; Bremer PJ; Kim KW; McQuillan AJ
    Langmuir; 2006 Jan; 22(1):286-91. PubMed ID: 16378433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes.
    Pons L; Délia ML; Bergel A
    Bioresour Technol; 2011 Feb; 102(3):2678-83. PubMed ID: 21131196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm retention on surfaces with variable roughness and hydrophobicity.
    Tang L; Pillai S; Revsbech NP; Schramm A; Bischoff C; Meyer RL
    Biofouling; 2011 Jan; 27(1):111-21. PubMed ID: 21181571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative and morphological analysis of biofilm formation on self-assembled monolayers.
    Ploux L; Beckendorff S; Nardin M; Neunlist S
    Colloids Surf B Biointerfaces; 2007 Jun; 57(2):174-81. PubMed ID: 17353117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy.
    Villena GK; Fujikawa T; Tsuyumu S; Gutiérrez-Correa M
    Bioresour Technol; 2010 Mar; 101(6):1920-6. PubMed ID: 19919894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.
    Davis EM; Li D; Shahrooei M; Yu B; Muruve D; Irvin RT
    Acta Biomater; 2013 Apr; 9(4):6236-44. PubMed ID: 23212080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation.
    Korenblum E; Sebastián GV; Paiva MM; Coutinho CM; Magalhães FC; Peyton BM; Seldin L
    Appl Microbiol Biotechnol; 2008 May; 79(1):97-103. PubMed ID: 18330565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Investigation of the structure of biofilms formed by sulfur cycle bacteria on metal matrices].
    Protasova MO; Lazariev VH; Kozlova IP
    Mikrobiol Z; 2006; 68(5):80-6. PubMed ID: 17388123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Role of exopolymeric substances of corrosion-aggressive bacteria in the biofilm formation on the steel surface].
    Purish LM; Asaulenko LH; Abdulina DR; Vasyl'ev VM; Iutyns'ka HO
    Mikrobiol Z; 2011; 73(1):3-9. PubMed ID: 21442946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens.
    Song B; Leff LG
    Microbiol Res; 2006; 161(4):355-61. PubMed ID: 16517137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of electric currents on bacterial detachment and inactivation.
    Hong SH; Jeong J; Shim S; Kang H; Kwon S; Ahn KH; Yoon J
    Biotechnol Bioeng; 2008 Jun; 100(2):379-86. PubMed ID: 18080346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.
    Toutain CM; Caizza NC; Zegans ME; O'Toole GA
    Res Microbiol; 2007 Jun; 158(5):471-7. PubMed ID: 17533122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Confocal imaging of biofilm formation process using fluoroprobed Escherichia coli and fluoro-stained exopolysaccharide.
    Maeyama R; Mizunoe Y; Anderson JM; Tanaka M; Matsuda T
    J Biomed Mater Res A; 2004 Aug; 70(2):274-82. PubMed ID: 15227672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.